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Introduction

Software

This course will use open source software ONLY.

All software is free - no excuses for not being able to work at home.

Software can be download off the internet.

Install R first. (R Core Team, 2013)

Install Rtools second.

Install RStudio third.

Then install essential R packages using RStudio:

rmarkdown ←− this will be used for all assignments
openxlsx ←− to read Excel files
rstan ←− this will be the focus of half the course
loo and lme4 ←− to compare models
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R Coding (not for examination)

Assignment and Vectors

The following are identical but ‘< −’ is the standard:

x = 5

x <- 5

5 -> x

The following are vectors:

x <- c(1,2,3,4,5)

x <- c(’Green’,’Red’,’Blue’)

x <- 1:10

x <- seq(1,11,2)

x <- seq(0,10, length.out =20) # You can replace ‘length.out ’ with ‘

length ’ or ‘leng ’ or ‘len ’ or ‘l’.

x <- rep(’a’ ,10)

x <- rep (1:4 ,1:4)

x <- rep(1:3, each=2,times =3)
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R Coding (not for examination)

Matrices

The following are matrices:

matrix(0,nrow=3,ncol =4) # Or matrix (0,3,4)

x <- matrix (1:4,3,4, byrow=TRUE)

matrix (1:12 , ncol =4)

diag(rep(1,4))

Data sets are usually not matrices but you can pretend they are and you’ll
generally be fine.
Matrices can be given row names and column names as follows:

rownames(x) <- c(’a’,’b’,’c’)

colnames(x) <- c(’w’,’x’,’y’,’z’)
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R Coding (not for examination)

Let’s break it down

The number in the third column of the second row of matrix x is:

x[2,3]

The second column of a matrix x is:

x[,2]

Note that this comes out as a vector. Add ‘,drop=F’ to stop that.
The first 3 columns of matrix x is:

x[,1:3]

# or

x[,-4]
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R Coding (not for examination)

Let’s build it up

Suppose I want to put two copies of x next to each other in a new matrix
y.
Method 1:

(y <- cbind(x,x))

Method 2:

(y <- matrix(x,3,8))

Note that Method 1 preserves the names, while Method 2 does not
because it makes a new matrix.
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R Coding (not for examination)

Let’s build it up more

Suppose I want to put two copies of x underneath each other in a new
matrix y.
Method 1:

(y <- rbind(x,x))

Method 2:

(y <- matrix(t(x) ,6,4,byrow=T))
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R Coding (not for examination) Data

Read in survey data

First change directory to where you saved the file, unless you’re working in
Rmarkdown, in which case it will be done for you automatically.

survey <- read.csv(’RWorkshopData.csv’,row.names

=1)

names(survey)

nrow(survey)

class(survey)

class(survey$FavColour)

summary(survey)

attach(survey) # Creates a separate variable for

each column

sd(Age)
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R Coding (not for examination) Data

Summarising data

All of EXCEL’s pivot table functionality is available

‘table’ works well for categorical variables

table(ChickenOrFish)

table(ChickenOrFish ,FlashDiskSize)

‘tapply’ works well for continuous variables

tapply(Tweets ,ChickenOrFish ,sum)

tapply(Tweets ,list(FlashDiskSize ,ChickenOrFish),sum)

These functions make drawing graphs much easier
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R Coding (not for examination) Data

Basic Graphs

Let’s draw some graphs of our data:

hist(Age)

barplot(table(ChickenOrFish))

barplot(table(ChickenOrFish ,UGorPGorLec))

pie(table(UGorPGorLec))

plot(Age ,Tweets)

qqnorm(Age)

qqline(Age) # adds line to previous qqplot
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R Coding (not for examination) Help

Help

There are lots of ways to get help in R:

If you know the name of the command to use but need help with how
to use it (or want to know more about what it can do) then use the
command ‘?’

For example, ‘?mean’, ‘?cor’, ‘?apply’, etc.

‘?par’ will give you a list of graphics parameters you can use to make
your graphs look any way you want.

If you have some idea of the command you need then use ‘??’

‘??csv’ will lead you to commands that work with ‘.csv’ files.
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R Coding (not for examination) Help

More Help

If you know what you want to do but have no idea how to do it then
Google

Just explain what you want to do in the search box and add ‘R’
somewhere

This is usually the best way to get answers to complicated problems.

If you just generally want to know more about R (or forgot the help
commands) then click on the Help menu and explore the options
there.

Lastly, there are many useful books.
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R Coding (not for examination) Linear Models and GLMs

Regression

Models are specified using a special syntax inside the command ‘lm’:

‘∼’ separates the dependent variable on the left of it with the model on
the right of it.
‘+’ adds a variable to the model
‘.’ indicates all the available variables (requires specifying a dataset)
‘1’ refers to a constant/intercept (column of ones)
‘-’ excludes a variable. For example, the intercept is automatically
included in every model, so to exclude it use ‘-1’.
‘:’ between two variables indicates the interaction
‘*’ includes both variables and their interaction

Random effects have additional syntax. If you are using ‘lmer’ then
you can include random intercepts using (1|VariableName) for
example.
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R Coding (not for examination) Linear Models and GLMs

Regression

Use ‘summary’ to get nice output.

Use ‘plot’ to get diagnostic plots.

Use ‘anova’ to get an ANOVA table.

Examples:

summary(model1 <- lm(Tweets~Age))

plot(model1)

summary(lm(Tweets~Age+Nexercise))

anova(lm(Age~UGorPGorLec))

For GLMS: replace ‘lm’ with ’glm’ and add the link and distribution.

summary(model2 <- glm(Age~Nexercise ,family=

poisson(link="log")))
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R Coding (not for examination) Logical indexing

Logical indexing

We saw that [ ] can be used to access pieces of a vector or matrix
using indexes.

w <- 11:20

w[4:5]

w[5: length(w)]

But subsets can also be obtained using TRUE (or non-zero numbers)
and FALSE (or zeros) to indicate which elements should be returned
or not returned.

w[c(F,FALSE ,F,T,T,F,F,F,F,F)]

w[c(F,F,F,F,T,T,TRUE ,T,T,T)]

w[c(rep(F,4),rep(T,6))]
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R Coding (not for examination) Logical indexing

Logical indexing p.2

The TRUE and FALSE can be generated automatically.

It helps if you think of the [ ] as meaning ‘where’

Examples:

# To look at the exercise of Lecturers use

Nexercise[UGorPGorLec ==’Lecturer ’]

# To look at undergrad tweeting use

Tweets[UGorPGorLec ==’Undergrad ’]

# The ages of students that chose Chicken:

Age [((( UGorPGorLec ==’Undergrad ’) | (UGorPGorLec ==’Postgrad ’))

& (ChickenOrFish ==’Chicken ’))]
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R Coding (not for examination) Logical indexing

Basic tests

Are fish lovers older?

t.test(Age[ChickenOrFish ==’Chicken ’], Age[ChickenOrFish ==’Fish

’])

Do students tweet more than lecturers?

t.test(Tweets [(( UGorPGorLec ==’Undergrad ’) | (UGorPGorLec ==’

Postgrad ’))], Tweets[UGorPGorLec ==’Lecturer ’])

Is there a relationship between exercise and flash disks?

chisq.test(table(Nexercise , FlashDiskSize))

Are ages Normal?

shapiro.test(Age)
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R Coding (not for examination) Logical indexing

Other tests

Is there a general preference for Chicken or Fish?

prop.test(sum(ChickenOrFish ==’Chicken ’), length(ChickenOrFish)

)

# This works because a TRUE is a 1 and a FALSE is a 0, so ’sum

’ counts the number of people that chose Chicken

What about if we break up the sample according to FlashDiskSize?

(FDsizes <- levels(FlashDiskSize))

for (i in FDsizes) {

print(prop.test(sum(( ChickenOrFish ==’Chicken ’) & (

FlashDiskSize ==i)), sum(FlashDiskSize ==i)))

}
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R Coding (not for examination) Packages

Installing packages

Sometimes the functionality you want is not available in standard R.

There are hundreds of packages available for download that add new
functions.

You can go to http://cran.r-project.org/web/packages/ and
download the package you want (or use Google to find exactly what
you want).

If you have downloaded the package you can install it using the menu
button ‘Install package(s) from local zip files’.
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R Coding (not for examination) Packages

Easy packages

A much easier way is to install over the internet directly.

Off-campus, click on ‘Install package(s)’ on the menu.

On campus use the following command:

install.packages(’pkgname ’,repos=’http://

mirror.ufs.ac.za/cran’)

Remember to replace pkgname with the name of your package.

For today we will only need the ‘rgl’ package, so install that now.
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R Coding (not for examination) Packages

The RGL package

The RGL package lets you draw 3D graphs.

Load it now using the library command or the button on the menu:

library(rgl)

Let’s draw a graph using 5 of our variables at once.

plot3d(Age ,Nexercise ,Tweets ,type=’s’,size =((

ChickenOrFish ==’Chicken ’)+1),col=FavColour)

# If there is a problem with the colours , run

the following and then try again

for (i in 1: length(FavColour)) { if (!any(

colours ()== FavColour[i])) {FavColour[i] <-

’black’}}
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R Coding (not for examination) Practice Problems

Create a data set in EXCEL

Create a data set in EXCEL with two variables:

1 Random integers from 1 to 9

2 A random sequence of ‘a’ or ‘b’

It should look something like this:

rownum randint randfactor

1 3 a

2 6 b
...

...
...

20 2 a
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R Coding (not for examination) Practice Problems

Do tests

1 Read the data into R.

2 Do a t test to see if the mean of the a’s is the same as the mean of
the b’s.

3 Do a runs test to see if your a’s and b’s were random.

Install package ‘lawstat’, load it, convert your a’s and b’s to
‘TRUE/FALSE’ and use runs.test .
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R Coding (not for examination) Loops

for loops

For loops are used to repeat boring tasks.

The basic notation is

for (i in 1:n) {

# Commands to be repeated n times

}

As we saw before, 1:n can be replaced with any sequence or vector,

BUT 1:n is actually the best practice!

Also, remember to create space to store the results in advance - the
speed gains are enormous.
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R Coding (not for examination) Loops

for loop examples

Let’s use a loop to get the first 30 numbers in the Fibonacci series

fibonacci <- rep(1,30)

for (i in 3:30) {

fibonacci[i] <- fibonacci[i-2] + fibonacci[i-1]

}

print(fibonacci)

for loops are best for complicated operations or operations that must
happen in a specific order,

Otherwise it’s better to use vector operations.

For example, let’s replace all the even numbers in the Fibonacci series with
random Normal values:

fibonacci [( fibonacci %%2)==0] <- rnorm(sum(( fibonacci %%2)==0))

fibonacci

prettyNum(fibonacci)
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R Coding (not for examination) Loops

while loops and ifs

While loops replace the counter with a condition.

Let’s roll 3 dice until all of them are 5s or at least 2 of them are 6s

(dice <- ceiling(runif (3)*6))

while (!(all(dice ==5) || (sum(dice ==6) >=2))) {

print(dice <- ceiling(runif (3)*6)) }

if statements are used to branch or handle special conditions

Let’s change our loop to only stop on 6s if 6s happened before

(dice <- ceiling(runif (3)*6))

SixesHappened <- FALSE

while (!(all(dice ==5) || ((sum(dice ==6) >=2) && SixesHappened))

) {

if (sum(dice ==6) >=2) { SixesHappened <- TRUE }

print(dice <- ceiling(runif (3)*6)) }
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R Coding (not for examination) Functions

Functions

Functions are closed boxes of code that take in some input, do
calculations, and produce output.

Actually, any or all of those are optional.

Functions make your code simpler and easier to understand.

Functions mean you don’t have to rewrite existing code when you
have a new problem.

What happens in the function stays in the function.

YourFunctionName <- function(inputs) {

Calculations

return(outputs) }
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R Coding (not for examination) Functions

Example function 1

Let’s make a function that checks whether numbers are even.

is.even <- function(numbers) {

evens <- (numbers %%2)==0

names(evens) <- numbers

return(evens) }

is.even (4)

is.even (5)

is.even (5:10)

is.even(matrix(round(runif (16) +2) ,4))

Practice: make a function for uneven numbers using this function and
the ‘not’ operation ‘!’
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R Coding (not for examination) Functions

Example function 2

For our next function we will take in a numeric variable and a factor.

We will do the Shapiro-Wilk test for Normality on the variable for each level
of the factor.

We will return the p-values as a named vector.

SWpvalues <- function(numericvar ,factorvar) {

factorlevels <- levels(factorvar)

numlevels <- nlevels(factorvar) # OR numlevels <- length(

factorlevels)

pvalues <- rep(0.5, numlevels)

for (i in 1: numlevels) {

pvalues[i] <- shapiro.test(numericvar[factorvar == factorlevels

[i]])$p.value

}

names(pvalues) <- factorlevels

return(pvalues) }
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R Coding (not for examination) Functions

Running Example function 2

And now we will apply it to our data.

SWpvalues(Age ,ChickenOrFish)

SWpvalues(Tweets ,FlashDiskSize)

Notice how the same code solves multiple problems, even ones we
haven’t thought of yet!

Currently our function requires a factor but what if we want it to
work even if the user doesn’t supply a factor?

Just replace the first line with

SWpvalues <- function(numericvar ,factorvar=factor(rep(1,length

(numericvar)))) {
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R Coding (not for examination) Functions

Abusing Example function 2

Let’s use our function for something we didn’t design it for:

I want to do the Normality test for every column of a matrix.

No need for a new function or even a loop.

Normal.matrix <- matrix(rnorm (200 ,2 ,2) ,50)

apply(Normal.matrix ,2,SWpvalues)

# 2 means split by dimension 2, this is

opposite to MATLAB
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R Coding (not for examination) Functions

Taking things up a notch

Let’s increase the number and size of each sample.

Normal.matrix <- matrix(rnorm (20000000 ,2 ,2) ,5000)

x <- apply(Normal.matrix ,2,SWpvalues)

You should have noticed that it took a while.

That’s because it only used 1 core of the processor.

If we work with functions we can use multiple cores at the same time
using the parallel library.

library(parallel)

cl <- makeCluster (4)

x <- parCapply(cl,Normal.matrix ,SWpvalues)

stopCluster(cl)
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R Coding (not for examination) Maximum Likelihood

An Exponential Regression Model

Consider the following model:

yi ∼ Exp(λi = 1
µi

)

µi = xiβ

f (yi ) = 1
xiβ

exp{− yi
xiβ
}

Lik(y) =
[∏n

i=1
1

xiβ

]
exp{−

∑n
i=1

yi
xiβ
}

`(y) = −
∑n

i=1 log(xiβ)−
∑n

i=1
yi

xiβ

We are interested in the estimates of β and are going to try to get
them with the ML method.
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R Coding (not for examination) Maximum Likelihood

First program the negative log likelihood

nll.expmodel <- function(b,y,X) {

if (any(y<=0) || any(X%*%b<=0)) { return

(100000000)

} else {

nll <- sum(log(X%*%b)) + sum(y/(X%*%b))

return(nll) } }

Then find the point where is it a minimum:

X <- cbind(rep(1,length(Age)),Tweets ,Nexercise)

(firstguess <- coef(lm(Age~Tweets+Nexercise)))

(beta.hat <- optim(firstguess ,nll.expmodel ,y=Age ,

X=X,method="L-BFGS -B")$par)
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Univariate Simulation (not for examination) Why simulate?

History of Simulation

Definition of Simulate: To assume the mere appearance of, without
the reality; to assume the signs or indications of, falsely; to
counterfeit; to feign.

Simulation was invented long before it was possible to do it properly.

Most statistical simulation techniques were invented in the 70s and
80s from a theoretical standpoint.

Doing simulations in those days meant making holes in punch-cards
and feeding them to a mainframe computer.

Basic simulations took days.

Now it’s easy and fast.
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Univariate Simulation (not for examination) Why simulate?

Why simulate?

To calculate probabilities and measures (mean, quantiles, etc.) of
distributions when it is impossible or difficult to do so in closed form.
(Happens all the time in Bayes!)

To describe and analyse the behaviour of a complex system or process.

To ask “what if” questions.

It is a shortcut or check for problems that are difficult to solve from a
theoretical basis.

It can even solve problems that have no theoretical basis.
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Univariate Simulation (not for examination) Why simulate?

Pseudo Random Numbers

A computer doesn’t understand ‘pick a number from 1 to 10’, i.e. it
can’t come up with random numbers at all!

Instead, it constructs a deterministic (non-random) sequence of
numbers that has all the properties of a set of independent U(0, 1)
random numbers.

It basically fakes it well enough to pass every test of randomness that
we care to apply to it.

The most commonly used set of tests is called DIEHARD and were
developed by Professor George Marsaglia, Department of Statistics,
Florida State University.

They are available at the following Web site:
http://i.cs.hku.hk/~diehard
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Univariate Simulation (not for examination) Why simulate?

PRNGs

Microsoft Excel and most Microsoft products apply the Wichman
algorithm (a Linear Congruential Generator) to get random numbers
(Wichman and Hill, 1982).

For 20 years it was the best available and the first to pass the basic
DIEHARD tests.

As people started simulating more it became clear that this algorithm
is inadequate, as it can repeat itself as early as every 1013 values
(depending on the variant) and isn’t perfectly fair to all values in the
target range.

It also has serial correlation and the lower order bits start repeating
very quickly (the last bit alternates).
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Univariate Simulation (not for examination) Why simulate?

Twister

The Mersenne Twister algorithm by Nishimura and Matsumoto
generates double-precision (64-bit) values in the closed interval
[2−53, 1− 2−53].

It has a period of (219937 − 1)/2 (approx. 2× 106001)

For a full description of the Mersenne twister algorithm, see http:

//www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

This algorithm is standard in newer versions of MATLAB, R, SAS,
Mathematica.

Statistical packages use this to generate other distributions.

For example, R has these distributions built in (and you can download
more): Beta, Binomial, Cauchy, χ2, Exponential, F, Gamma,
Geometric, Hypergeometric, Log-Normal, Multinomial, Negative
Binomial, Normal, Poisson, t, Uniform, Weibull, and a few more.
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Univariate Simulation (not for examination) How to simulate

R Code for basic simulation

1 random U(a = 2, b = 3) value: runif(1, 2, 3)

2 random N(µ = 3, σ2 = 22 = 4) values: rnorm(2, 3, 2)

3 random Gamma(α = 4, λ = 5) values: rgamma(3, 4, 5)

4 random χ2
6 values: rchisq(4, 6)

1 Multivariate Normal vector with mean vector

[
3
4

]
and covariance

matrix

[
1 0.2

0.2 1

]
:

library(MASS); mvrnorm(1, c(3,4), matrix(c(1 ,0.2 ,0.2 ,1) ,2,2))
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Univariate Simulation (not for examination) How to simulate

Inverse CDF Method

To go from a Uniform value to a value from some other distribution
we have to transform it in some way.

The easiest way is to simply apply the inverse cumulative distribution
function (quantile function):

Let U ∼ U(0, 1) and let X = F−1(U) then the CDF of X is F .

Proof : P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

Example: If X ∼ U(0, 1) then T = − log(X )/λ ∼ Exp(λ).

Any distribution whose CDF can be inverted will work well with this
method, e.g. Weibull, Pareto, Gumbel, U(a,b), etc.

It also works well with any finite discrete distribution (see next slide).
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Univariate Simulation (not for examination) How to simulate

Discrete Inverse CDF
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Univariate Simulation (not for examination) How to simulate

Discretization

What do we do with a continuous distribution where we can’t invert
the CDF? If the domain is finite and small enough then we can turn it
into a discrete distribution!

We simply calculate the value of the CDF at small intervals of the
domain and simulate values from this distribution.

As long as our intervals are small enough, and we cover almost all the
probability, we will get an accurate approximation.

If you can’t calculate the CDF then calculate the PDF at points in
the domain and calculate the cumulative sum to get an approximation
of the CDF.

NB: Your CDF must start at zero and end at one!

We can divide every value of the approximate CDF with its last value
(the sum of the entire discretized PDF). This is the easiest option
when you have an unknown constant.
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Univariate Simulation (not for examination) How to simulate

Example of Discretization

Let f (x) = c log x , 1 ≤ x ≤ 2.

In this case we can’t invert the CDF.

R code for simulating from this distribution:

n <- 240

accuracy <- 500

x <- seq(1,2,length.out=accuracy)

fx <- log(x)

sims <- sample(x,n,replace=TRUE ,prob=fx)]

print(sims)

The sample command does the standardising and simulating for you.
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Univariate Simulation (not for examination) Additional practical considerations

Overlaying a frequency diagram on a histogram

Assume you have a histogram of n simulations/observations with h
partitions.
And you have a discretized density over the same domain with d
values/partitions.
Then you calculate the normalising constant η, required to get the
density on the same scale as the histogram, by solving the equation
n
h = η

d , i.e. η = n.d
h .

h <- 15

breaks <- seq(1,2,l=(h+1))

hist(sims ,breaks ,col=’violet ’)

lines(x,fxs*n*accuracy/h,col=’dark green’)

Histogram of sims
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Univariate Simulation (not for examination) Additional practical considerations

Always work on the log scale

In R ex =∞ ∀ x > 709.

Consider the problem e−800 × e800. The correct answer is 1 but R will
calculate it as 0×∞ = NaN.

However, if you take the log, do the calculation, and then only take
the exponent at the end, then you get the right answer:
exp {−800 + 800} = 1.

In practice, always work on the log scale as long as possible.

If you want to take the log of the gamma function use ‘lgamma(x)’
instead of ‘log(gamma(x))’.

When working with really small probabilities it may help to work on
the log scale. For example, all density functions in R have a ‘log’
option.

Lastly, use approximations in extreme cases, e.g.
log(1 + eη) ≈ η ∀ η > 709.
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Univariate Simulation (not for examination) Additional practical considerations

Other Univariate Samplers

Acceptance-Rejection method:

Put the density in a tight box (or more complicated shape).
Pick a random point in the box.
If the point is below the density curve then accept the x value.

Sampling Importance Resampling:

Pick values from easy density close to target density.
Calculate weights of these values using the ratio of densities at these
values (target over proposal).
Standardize the weights to add up to 1.
Resample from previously picked values according to their weights.

Slice Sampling
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Univariate Simulation (not for examination) Additional practical considerations

Example of Acceptance Rejection

Let X ∼ Beta(3, 4). Simulate 1000 numbers from the density and
compare to the density.

maxval <- dbeta ((3-1)/(3+4 -2) ,3,4)

i <- 0; n <- 1000; sims <- rep(0.5,n)

while (i<n) {

x <- runif (1)

if (dbeta(x,3,4) > (runif (1)*maxval)) {

i <- i + 1; sims[i] <- x

}

}

plot.ecdf(sims)

xvals <- seq(0,1,l=1000); lines(xvals ,pbeta(xvals ,3,4),col=’

magenta ’)
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Univariate Simulation (not for examination) Additional practical considerations

Example: Roulette Table

If I bet on odds every time with R10, what is my profit distribution
after 20 spins of a roulette wheel?

First let’s consider an example spin:

(roulettenums <- c(’00’,as.character (0:36)))

(spins <- sample(roulettenums ,20, replace=T))

Now let’s do 20 spins, 1000 times and store the profits:

profits <- rep (0 ,1000)

for (i in 1:1000) {

profits[i] <- sum((( runif (20) <(18/38))*2 - 1)*10)

}

hist(profits ,100, xlab=’Profit in Rand’,col=’navy’,density =10,

angle =30)
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Univariate Simulation (not for examination) Additional practical considerations

Exercises 1
Next Exercises

For numbers 1 to 5 below, summarise your answers in a nice histogram, as well as
an empirical CDF plot with the target CDF overlaid.

1 Simulate 23 random values directly from the F (3, 4) distribution.

2 Construct 34 random F (3, 4) values by simulating values from χ2

distributions only.

3 Construct 45 random F (3, 4) values by simulating standard Normal random
numbers only.

4 Simulate 1000000 random values from the density f (x) = cx , 1 ≤ x ≤ 2
(Inverse CDF method).

5 Simulate 100 dice rolls.

6 Simulate 1 pack of shuffled cards, give the cards in the shuffled order.
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Univariate Simulation (not for examination) Additional practical considerations

Exercises 2
Previous Exercises Next Exercises

For numbers 1 to 4 below, summarise your answers using histograms/bar charts
as well as CDF plots.

1 Simulate 2000 random values from a N(2, 3) distribution that is truncated a
zero (negative numbers not allowed).

2 Simulate 200 Likert-scale (’Disagree’,’Partly Disagree’,’Neutral’,’Partly
Agree’,’Agree’) values using a N(3, 1) distribution as a basis (’Neutral’
should be the most common response).

3 Repeat the above scale simulation using a t4 + 3 distribution instead and
then a Gamma(9, 3) distribution.

4 Simulate 10000 random values from the density
f (x) = c sin(x) cos(x) , 0 ≤ x ≤ 1.5 using discretization, another 10000
values using the acceptance-rejection method and then use
sampling-importance resampling (using truncated Gamma as easy density)
to get another 10000 values. Which set of results was closest to the target
for your simulations?
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Basics of Bayes Introduction

Things you should know by now

Frequentist definition of probability (proportion of ‘successes’ in many
repetitions).

Bayesian definition of probability (personal degree of belief in a future
‘success’).

Advantages and disadvantages of each

Frequentists have one probability for everything, while in Bayesian
statistics every person has their own probability for something and
this probability can change over time. Only by understanding both
definitions can we solve practical problems in the real world.

What a likelihood is and how to derive one.

Frequentist methods of parameter estimation (method of moments
and method of maximum likelihood).
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Basics of Bayes Introduction

Bayes’ theorem

Discrete Version Given: P(A|Bi ), i ∈ {1, . . . , n};∪ni=1Bi = 1.
Then:

P(Bi |A) =
P(Bi ∩ A)

P(A)

=
P(A|Bi )P(Bi )∑n
j=1 P(A|Bj)P(Bj)

Continuous version

f (θ|x) =
f (θ, x)

f (x)

∝ f (x |θ)f (θ)

In general we say that the posterior distribution of the parameters given
the data is proportional to the likelihood of the data given the
parameters times the prior distribution of the parameters.
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Basics of Bayes Introduction

Revision

1 If a sample of Log-Normal values has a mean of 10 and a variance of
20, then, according to the method of moments, what are the values of
the parameters µ and σ (corresponding Normal mean and variance)?

2 If X ∼ Beta(α, β) then how can we get moment estimates of the
parameters if we have E (X ) and Var(X )?

3 What is the likelihood if we have a sample of values from the above
distribution?

4 How does the data affect the prior distribution?

5 Why do we use the proportional sign in Bayes’ theorem?
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Basics of Bayes Conjugate Priors

Example 1 - Bernoulli

Consider a single flip of a possibly biased coin.
Let x be the number of heads (0 or 1).
θ = p where p is the unknown probability of getting a heads on one flip of
this coin.

Lik(x |θ) = px(1− p)1−x

If we have no idea what the probability is in advance then we can assume
a Uniform distribution for p, i .e. f (p) = 1. Then π(p|x) ∝ px(1− p)1−x ,
which means that (because we recognise the Beta distribution)

π(p|x) = c ∗ px(1− p)1−x

=
Γ((x + 1) + (2− x))

Γ(x + 1)Γ(2− x)
px(1− p)1−x

=
2px(1− p)1−x

Γ(x + 1)Γ(2− x)
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Basics of Bayes Conjugate Priors

Bernoulli with subjective prior

Now suppose the owner of the coin is found and he says that the coin
comes up tails 2 out of 3 times, but this varies from day to day like any
other coin.
We can use this information by assigning a Beta(0.5, 1) prior for p since
this distribution has mean 1/3 and variance 1/11.25 which is close to the
1/12 variance of the Uniform.
Explicitly: f (p) = c1p

−0.5(1− p)0 so that

π(p|x) = c2 ∗ c1 ∗ px−0.5(1− p)1−x

=
Γ((x + 0.5) + (2− x))

Γ(x + 0.5)Γ(2− x)
px−0.5(1− p)1−x

=
3
4

√
πpx−0.5(1− p)1−x

Γ(x + 1)Γ(2− x)
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Basics of Bayes Conjugate Priors

Multiple Coin Tosses

Consider n tosses with the number of heads on each toss being xi .
The “likelihood” of an outcome from this experiment is the probability
that X1 = x1 and X2 = x2 and so on.
Since these tosses are independent the “and’s” become “times”.
Formally,

Lik(x|p) =
n∏

i=1

pxi (1− p)1−xi

= p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi

Applying the same prior as before we get the posterior:

π(p|x) = c ∗ p
∑n

i=1 xi−0.5(1− p)n−
∑n

i=1 xi

=
Γ(n + 1.5)

Γ(
∑n

i=1 xi + 0.5)Γ(n + 1−
∑n

i=1 xi )
p
∑n

i=1 xi−0.5(1− p)n−
∑n

i=1 xi
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Basics of Bayes Conjugate Priors

R code

Problem: given the mean and variance of the subjective Beta prior, graph
the posterior of p.

Solution:

prior.mean <- 1/3

prior.var <- 1/11.25

(prior.mean*(1-prior.mean)/prior.var) -> ab1

(prior.mean*(ab1 -1)) -> a

b <- (1-prior.mean)*(ab1 -1)

p <- seq(0,1,length.out =400)

n <- 12

(x <- (runif(n) < 0.3))

post <- p^(sum(x)+a-1)*(1-p)^(n-sum(x)+b-1)*gamma(n+a+b)/gamma(sum(

x)+a)/gamma(n-sum(x)+b)

# OR post <- dbeta(p,(sum(x)+a),(n-sum(x)+b))

plot(p,post ,type=’l’); grid()

# OR library(LearnBayes); triplot(c(a,b),c(sum(x),(n-sum(x))),’

right ’)
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Basics of Bayes Discrete Bayes

General Discrete Prior

Consider now the owner of the coin says he’s not sure whether it’s the
fair coin or the biased coin.
He says there’s a 50% chance that p = 0.5 and a 50% chance that
p = 1/3.
Then

π(pi |x) =
c ∗ Lik(x |pi )π(pi )∑k
j=1 c ∗ Lik(x |pj)π(pj)

∴ π(p = 1/3|x) =
Lik(x |p = 1/3)π(p = 1/3)

Lik(x |p = 1/3)π(1/3) + Lik(x |p = 0.5)π(0.5)

=
1/3

∑n
i=1 xi−0.5(2/3)n−

∑n
i=1 xi

1/3
∑n

i=1 xi−0.5(2/3)n−
∑n

i=1 xi + 0.5n

R Code:

library(LearnBayes); pdisc(c(1/3,0.5),c(0.5 ,0.5),c(sum(x),(n-

sum(x))))
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Basics of Bayes Discrete Bayes

General Discrete Bayes Code

Consider now an arbitrary likelihood function:

myLikelihood <- function(thedata , theta) {

#Code to calculate the likelihood should go here:

Lik <- (theta ^(sum(thedata)))*((1- theta)^( length(thedata)-sum(

thedata)));

return(Lik) }

Then the code for calculating the posterior is:

discrete.posterior <- function(p, prior , thedata , Lik) {

k <- length(p)

post <- rep(0,k)

for (i in 1:k) { post[i] <- Lik(thedata , p[i])*prior[i] }

post <- post/sum(post)

return(post) }

discrete.posterior(c(1/3 ,0.5),c(0.5 ,0.5),x, myLikelihood)
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Basics of Bayes Discrete Bayes

Examples of Conjugate Priors

Density Parameter Prior Posterior
Poisson(λ) λ > 0 U(0,∞) Gamma (

∑
x + 1, n)

Poisson(λ) λ > 0 Gamma(a, b) Gamma (
∑

x + a, n + b)
Gamma(α, λ) λ > 0 U(0,∞) Gamma (nα + 1,

∑
x)

Gamma(α, λ) λ > 0 Gamma(a, b) Gamma (nα + a, b +
∑

x)
Weibull(c , γ) c > 0 U(0,∞) Gamma (n + 1,

∑
xγ)

Weibull(c , γ) c > 0 Gamma(a, b) Gamma (n + a, b +
∑

xγ)

N(µ, σ2) µ U(−∞,∞) N
(

1
n

∑
x , σ

2

n

)
N(µ, σ2) µ N(a, b2) N

(
b2 ∑ x+aσ2

nb2+σ2 , b2σ2

nb2+σ2

)
LogN(µ, σ2) µ U(−∞,∞) N

(
1
n

∑
log x , σ

2

n

)
Bin(m, p) 0 < p < 1 U(0, 1) Beta (

∑
x + 1, nm −

∑
x + 1)

Bin(m, p) 0 < p < 1 Beta(a, b) Beta (
∑

x + a, nm −
∑

x + b)
NegBin2(k, p) 0 < p < 1 U(0, 1) Beta (nk + 1,

∑
x + 1)

NegBin2(k, p) 0 < p < 1 Beta(a, b) Beta (nk + a,
∑

x + b)
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Basics of Bayes Discrete Bayes

Exercises 3
Previous Exercises Next Exercises

1 A firm has 2 secretaries: one answers 10 calls an hour; while the other only
answers 6, but works twice as long. If 4 calls are answered in a particular
hour, what is the probability that the better secretary (10/h) was on duty?

2 Now they appoint another 2 secretaries and observe that they manage to
answer 4 and 5 calls an hour respectively, even though they both work 20%
longer than the one who answers only 6. If 9 calls are answered in a
particular hour, what is the probability of each secretary being on duty?

3 In a T-shaped maze, a laboratory animal is given a choice of going to the
left and getting food or going to the right and receiving a mild electric
shock. Assume that before any conditioning (in trial number 1) animals are
equally likely to go to the left or to the right. After having received food on
a particular trial, the probabilities of going to the left and right become 0.6
and 0.4, respectively, on the following trial. However, after receiving a shock
on a particular trial, the probabilities of going to the left and right on the
next trial are 0.8 and 0.2, respectively. What is the probability that the
animal will turn left on trial number 3? [Hint: this isn’t Bayes.]
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Basics of Bayes Discrete Bayes

Exercises 4
Previous Exercises Next Exercises

1 In a certain town, 35% of the people are DA supporters, 55% are ANC
supporters, and 10% are EFF supporters. Records show that in a particular
election, 60% of the DA supporters voted, 80% of the ANC supporters
voted, and 50% of the EFF supporters voted. If a person in this town is
selected at random and it is learned that he did not vote in the last election,
what is the probability that he is an EFF supporter?.

2 The number of cars driving down a large highway in a particular 10 min
period is Poisson but we don’t know the average. A local is asked to guess
and suggests a mean of 100 and a standard deviation of 30. The cars are
counted during that period on each of 10 days, with a total of only 900 cars.
Assuming a Gamma prior, what is the posterior distribution of the average?

3 Suppose that, instead of giving a standard deviation, he says that he’s 90%
sure the mean is over 50. What is the posterior probability that the mean is
over 60?
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Basics of Bayes Discrete Bayes

Exercises 5

Previous Exercises Next Exercises

1 I have four dice, one with 4 sides (D4), one with six sides (D6), one
with 8 sides (D8) and one with 12 sides (D12). I pick one of the dice,
roll it once and I get a 5. I go to the next room and tell my friend
that I rolled a 5 and ask him to guess which die I used. What is his
personal posterior probability for each die?

2 A random variable X can take on the values 0, 1, 2, 3 or 4. A prior is
suggested by an expert such that the probability of getting a 1 is
double that of getting a 0, the probability of getting a 2 is double
that of getting a 1, etc. Give this prior in the form of a proper prior
(sums/integrates to 1).

3 Suppose this random variable takes on the values 1, 2, . . . , n instead,
what is the prior now?
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Basics of Bayes Discrete Bayes

Exercises 6

Previous Exercises Next Exercises

1 The mean IQ of a random country is assumed to be N(100, 52). The
IQs of 10000 people are measured in a specific country that has a
known standard deviation of 15 IQ points between people and the
average is found to be 94. What is the posterior distribution of the
mean IQ of that specific country?

2 Derive the log density and log likelihood of the Weibull distribution
with density cγxγ−1 exp(−cxγ).

3 Derive the joint log posterior distribution of the parameters of the
Weibull distribution, assuming an Exp(λ1) prior for c and an Exp(λ2)
prior for γ.

4 What is the log posterior of the χ2
m distribution with prior Exp(v) on

m?
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Basics of Bayes Prediction

Posterior predictive distribution

In general the distribution of a future sample given the previously observed
sample, assuming you DON’T know the parameter values (as is usually the
case in real life), is:

π(x∗|x) =

∫
θ
f (x∗|θ)π(θ|x)dθ

This is called the posterior predictive distribution.
Of course, this integration is usually impossible. Instead we follow these
steps:

Simulate M sets of parameter values from the posterior.

For each set of parameter values, simulate new values from the
density or likelihood.

Put these new values together as an approximate posterior predictive
distribution and use them to answer questions.
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Basics of Bayes Prediction

Prediction Example

Let’s go back to our Bernoulli example: Given that the last three flips were
all tails, what is the probability that the next flip is a head?

π(x∗ = 1|[0, 0, 0])

=
1

3

1

∗ (1− 1/3)0 ∗ 0.7032967 + 0.51 ∗ (1− 0.5)0 ∗ 0.2967033

= 0.3827839

By simulation

post <- discrete.posterior(c(1/3,0.5),c(0.5 ,0.5),c(0,0,0),

myLikelihood)

postsims <- sample(c(1/3,0.5) ,1000000 ,T,post)

predsims <- (runif (1000000) < postsims)

mean(predsims)

we get 0.3828861, which is close enough.
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Basics of Bayes Prediction

Calculating probabilities from simulations

Consider a vector of simulated values s1, . . . , sm and a second vector
t1, . . . , tm that is the same length and may be dependent.

P(S > 4) =

mean(svec > 4)

P(2 ≤ S < 4) =

mean ((2 <= svec) & (svec < 4))

P(S > T + 2) =

mean(svec > (tvec + 2))

P(S = 0
⋃
T 6= 0) =

mean((svec == 0) | (tvec != 0))

Now suppose some values of t are missing, then P(T > t0) =

(sum(tvec >t0 ,na.rm=T))/sum(!is.na(tvec))
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Basics of Bayes Optimisation

Simple optimisation

To find the minimum of a function (say y = x2) we can use numeric
optimisation.

First we code the function as a function, then we find a reasonable
starting value.

objfunc <- function(x) {y = x^2; return(y)}

optim(1,objfunc)

We can restrict the domain if necessary or convenient:

optim(1,objfunc ,method="Brent",lower=-100,upper =100)

We can also use this method to solve equations.

Say we want a solution to the equation sin(x) + ln(x) = 1

objfunc <- function(x) {y = (sin(x)+log(x) -1)^2; return(y)}

optim(1,objfunc ,method="Brent",lower=0,upper=pi/2)
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Basics of Bayes Optimisation

Multidimensional optimisation

Most importantly, ‘optim’ works for multidimensional problems too.

Suppose we want the maximum point of the upside down cone like
shape z = −5x2 − x + 2− 4y2 − 2y .

We code the negative of the function so that the maximum becomes
the minimum, since ‘optim’ only finds the minimum.

objfunc <- function(vars) {z = -5*vars [1]^2- vars [1]+2 -4*vars

[2]^2 -2*vars [2]; return(-z)}

optim(c(1,2),objfunc ,method="L-BFGS -B",lower=c(-Inf ,-Inf),

upper=rep(Inf ,2))$par
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Basics of Bayes Optimisation

Always work on the log scale, continued

In practice, always work with the log posterior as long as possible —
it’s more accurate and stable.

When the log posterior is known to a constant only (usually the case)
then feel free to subtract or add any constant you wish in order to
avoid getting NaN when you take the exponent.

Explicitly: if log π(θ|x) = log Lik(x|θ) + log π(θ) + c then choose
c ≈ max [log π(θ|x, c = 0)].

For optimisation it is important to remember that the
minimum/maximum of the objective function is in exactly the same
place as the minimum/maximum of the log objective function!

Lastly, use approximations in extreme cases, e.g.
log(1 + eη) ≈ η ∀ η > 709.
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Basics of Bayes Optimisation

Exercises 7
Previous Exercises Next Exercises

1 Consider again the firm with 4 secretaries. If 4 calls are answered in a
particular hour, what is the distribution of the possible number of calls to be
answered in the next hour?

2 Summarise the posterior predictive distribution for the number of cars
question, for each of the Gamma priors.

3 Find at least 3 examples in the Bayes literature where the posterior
predictive distribution simplifies to a common known distribution.

4 For the IQ problem, summarise the posterior predictive distribution of the
next person to be tested in that country.

5 Summarise the posterior predictive distribution of the mean of the next 10
persons to be tested in that country.

6 Summarise the posterior predictive distribution of the standard deviation of
the next 100 persons to be tested in that country.
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Basics of Bayes Optimisation

Exercises 8
Previous Exercises Next Exercises

1 Consider the log posterior of the χ2
m distribution with prior Exp(0.05)

on m. The following 20 observations are recorded: 10 14 19 12 15 11
9 22 12 22 16 12 12 22 15 8 15 8 19 23. Summarise both the
posterior distribution of m as well as the posterior predictive
distribution of the next potential observation.

2 Illustrate the joint distribution of the next 2 potential observations.
Then illustrate the joint distribution of the next 3 potential
observations, either 2 at a time or all 3 dimensions at once.

3 Suppose conviction rates in South African courtrooms vary from one
judge to another according to a Beta(2, 5) distribution, and that a
particular judge dismisses 8 out of 12 cases heard in one day. What is
the probability that the same judge dismisses more than 8 out of the
10 cases on their docket the next day?
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Basics of Bayes Parameter Estimates

Posterior Mean

Let’s go back to our Beta(a, b) prior.

Under Squared Error Loss (an answer twice as far from the truth is 4
times as bad) the optimal estimate of a parameter (in this case p) is
its posterior mean.

There are three ways to calculate it:

1 Analytically. Since the posterior is Beta, and the mean of a Beta
distribution is known in general, it’s easy to see that the posterior
mean should be a+

∑
xi

a+b+n .

postmean <- (a + sum(x))/(a + b + n)
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Basics of Bayes Parameter Estimates

Posterior Mean Continued

2 Discretization. If we calculate the posterior at a set of points in the
parameter domain, we can estimate the posterior mean(∫

θ θπ(θ|x)dθ
)

as
∑acc.

i=1 θiπ(θi |x).

postmean <- sum(p*post)

3 Simulation. If we simulate a large sample from the posterior we can
average the simulated values.

postsims <- rbeta (100000 , (a+sum(x)), (b + n - sum(x)))

postmean <- mean(postsims)

Simulation is the most common way to calculate the posterior mean
in general.

If there is more than one parameter then the mean must be
calculated one parameter at a time.
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Basics of Bayes Parameter Estimates

Posterior Median

Under Absolute Error Loss (an answer twice as far from the truth is 2
times as bad) the optimal estimate of a parameter (in this case p) is
its posterior median.

There are three ways to calculate it:

1 Invert the CDF. Posterior Median = F−1(0.5) where F =
∫
π(θ|x)θ.

postmedian <- qbeta (0.5,(a+sum(x)), (b + n - sum(x)))
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Basics of Bayes Parameter Estimates

Posterior Median Continued

2 Discretization. If we calculate the posterior at a set of points in the
parameter domain, we can estimate the posterior median by
calculating the cumulative sum and finding the first point where this
sum exceeds half.

F <- cumsum(post)/sum(post)

postmedian <- p[match(1, F>0.5)]

3 Simulation. The median is approximately the middle sorted
simulation.

postmedian <- median(postsims)

If there is more than one parameter then the median must be
calculated one parameter at a time (remembering to standardise the
marginals correctly).
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Basics of Bayes Parameter Estimates

Posterior Mode

The posterior mode is the analogue of the maximum likelihood
(precisely the same in the case of a Uniform prior) and is optimal
under all-or-nothing loss.

NB: The mode must be calculated for all parameters simultaneously
(not like the mean and median).

There are three ways to get the posterior mode:

1 Differentiation. In very simple cases we can set the derivatives equal
to zero and solve for the parameters.

2 Discretization. If we calculate the posterior at a set of points in the
parameter domain, we can estimate the posterior mode using the
‘which.max’ function in R:

postmode <- p[which.max(post)]
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Basics of Bayes Parameter Estimates

Posterior Mode Continued

3 Optimisation. We can find the peak of the posterior distribution
using optimisation techniques from mathematics. The steps are as
follows:

3.1 Code the negative posterior, or better yet, the negative log posterior
as a function on its own. Remember that the posterior mode is in the
same place as the log posterior mode. The negative is necessary
because most optimisation functions try to find the minimum (not
maximum).

Bernoulli.neglogpost <- function(p,x,n,a,b) {

lpost <- (sum(x)+a-1)*log(p) + (n-sum(x)+b-1)*log(1-p) +

lgamma(n+a+b) - lgamma(sum(x)+a) - lgamma(n-sum(x)+b)

# OR lpost <- dbeta(p,(sum(x)+a),(n-sum(x)+b),log=TRUE)

return(-lpost)}
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Basics of Bayes Parameter Estimates

Optimisation Continued

3.2 (Optional) Code the posterior derivative vector as a function on its
own (otherwise numeric differentiation will be used). Again remember
the negatives.

3.3 Find suitable starting values, say using the method of moments.

3.4 Figure out whether there are constraints on the parameters.

3.5 Use an optimisation technique built into your statistical package, or
code your own. In R we usually use the function ‘optim’.

postmode <- optim ((sum(x)/n),Bernoulli.neglogpost ,x=x,n=n,a=a,

b=b,method=’L-BFGS -B’,lower =1e-15, upper =(1-1e-15))$par

Sean vdMerwe (University of the Free State) Bayesian Analysis Semester 1 of 2020 102 / 222



Basics of Bayes Parameter Estimates

Accuracy Statistics

In general, if model A gives point estimates that are closer to the observed
values than the point estimates of model B then model A is more accurate
than model B.
Consider errors ei = yi − ŷi and percentage errors pei = ei

|yi | then useful
statistics include

ME = 1
n

∑n
i=1 ei and MPE for measuring bias,

MAE = 1
n

∑n
i=1 |ei | and MAPE for measuring the distance between

observed and predicted values,

MSE = 1
n

∑n
i=1(ei )

2 and MSPE for measuring the deviation between
observed and predicted values and

RMSE =
√
MSE and RMSPE for viewing the MSE on the same

scale as the data and other statistics.

In the case of parameter estimation, we can simulate data so that we know
the true parameter values and then see which method gets closer
to those values. In that case yi = θ and ŷi = θ̂i .
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Basics of Bayes Parameter Estimates

Reparameterisation or equating parameters

Textbooks, papers, websites and programming languages often give or
require the parameters of standard distributions in a specific form.

One must always be careful when implementing a problem from a text
in a computer program to convert the given parameter values to the
form required by the program.

For example, the Actuarial Education Company gives the Weibull
density as f (x |c, γ) = cγxγ−1 exp(−cxγ);

while R requires the Weibull density in the form
f (x |a, b) = a

b

(
x
b

)a−1
exp

[
−
(
x
b

)a]
.

Since these need to be equivalent, we can equate any components of
these formulae.

cxγ ≡
(
x
b

)a
= b−axa

Thus, a = γ and b = c−a
−1

.

This technique is very useful in calculating specific integrals.
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Basics of Bayes Parameter Estimates

Exercises 9

Previous Exercises Next Exercises

1 Simulate 1200 samples of size 40 from a Poisson(8) distribution.
Assume a Uniform prior. For each sample calculate the posterior
mean, median and mode in as many ways as you can. Calculate the
ME, MAE and RMSE for λ.

2 Simulate 1200 samples of size 40 from a Weibull(0.12, 0.5)
distribution. Assume a Uniform prior for c and that γ is fixed at 0.5.
For each sample calculate the posterior mean, median and mode in as
many ways as you can. Calculate the ME, MAE and RMSE for c .

3 Simulate 1200 samples of size 40 from a NegBin2(8, 0.8) distribution.
Assume a Uniform prior for p and that k is fixed at 8. For each
sample calculate the posterior mean, median and mode in as many
ways as you can. Calculate the ME, MAE and RMSE for p.
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Basics of Bayes Posterior Intervals

Equal tailed intervals

A point estimate is always wrong!

Intervals are better.

Bayesian Credibility intervals are even better still! This is because
they give probabilities.

Equal tailed intervals are the easiest because you know which
quantiles you need, e.g. the 95% interval goes from 2.5% to 97.5%.

(postinterval <- qbeta(c(0.025 ,0.975) ,(a+sum(x)), (b + n - sum

(x))))

# OR

(postinterval <- c(p[match(1, F >0.025)],p[match(1, F >0.975) ]))

# OR

(postinterval <- quantile(postsims ,c(0.025 ,0.975)))
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Basics of Bayes Posterior Intervals

Highest posterior density intervals

Equal tailed intervals are not the best intervals.

You can get shorted intervals for a given probability and shorter
intervals are better.

For example, for an Exponential distribution the shortest 95% interval
is from 0% to 95%, not 2.5% to 97.5%.

In general, the shortest interval is tough to find though, and may
require nested optimisation.
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Basics of Bayes Posterior Intervals

HPD intervals by simulation

Consider every interval(
x( i

n+1 ), x
(

i+(1−α)n
n+1

)) , i = 1, . . . , bαnc

and see which one is the shortest

(
x( i+(1−α)n

n+1

) − x( i
n+1 ) is a minimum

)
.

nsims <- 10000

postsims <- rbeta(nsims , 3.5, 5)

sorted.postsims <- sort(postsims)

numints <- floor(nsims*0.05)

gap <- round(nsims*0.95)

widths <- sorted.postsims [(1+ gap):( numints+gap)] - sorted.postsims

[1: numints]

HPD <- sorted.postsims[c(which.min(widths) ,(which.min(widths)+gap))]
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Basics of Bayes Posterior Intervals

Exercises 10
Previous Exercises Next Exercises

1 Simulate 1200 samples of size 40 from a Poisson(8) distribution.
Assume a Uniform prior. For each sample obtain a symmetric and an
HPD interval for λ. On average, what proportion of the intervals
cover the true parameter value?

2 Simulate 1200 samples of size 40 from a Weibull(0.12, 0.5)
distribution. Assume a Uniform prior for c and that γ is fixed at 0.5.
For each sample obtain a symmetric and an HPD interval for c . On
average, what proportion of the intervals cover the true parameter
value?

3 Simulate 1200 samples of size 40 from a NegBin2(8, 0.8) distribution.
Assume a Uniform prior for p and that k is fixed at 8. For each
sample obtain a symmetric and an HPD interval for p. On average,
what proportion of the intervals cover the true parameter value?
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Objective Bayes Objective Priors

Introduction to Objective Priors

The idea with objective priors is to let the data speak for itself.

They are useful when we have no prior knowledge of the parameters
but still want to apply Bayesian principles.

They sometimes allow Bayes results to match frequentist properties.

They are often the limit of a subjective prior as the variance of that
prior goes to infinity (or closest substitute).

For example, in the Bernoulli case the Uniform prior is the same as the
Beta(α, β) prior with α = β = 1.
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Objective Bayes Objective Priors

MDI Prior (Zellner, 1997)

Definition

π(θ) = exp {EX [log f (x |θ)]}
∴ log π(θ) = EX [log f (x |θ)]

∴ log π(θ|x) = EX [log f (x |θ)] +
n∑

i=1

log f (xi |θ)

Example — Gamma Distribution

f (x |θ) =
λα

Γ(α)
xα−1e−λx

log f (x |θ) = α log λ− log Γ(α) + (α− 1) log x − λx
∴ log π(θ) = α log λ− log Γ(α) + (α− 1)(ψ(α)− log λ)− α
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Objective Bayes Objective Priors

Jeffreys’ Prior (Jeffreys, 1998)

Square root of determinant of Fischer Information matrix.
Definition
Let g = − log f (x |θ)

π(θ) ∝

∣∣∣∣∣∣∣∣∣∣
E ∂g
∂θ1θ1

E ∂g
∂θ1θ2

· · · E ∂g
∂θ1θk

E ∂g
∂θ2θ1

E ∂g
∂θ2θ2

...
...

. . .
...

E ∂g
∂θkθ1

· · · · · · E ∂g
∂θkθk

∣∣∣∣∣∣∣∣∣∣

1
2
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Objective Bayes Objective Priors

Jeffreys’ Prior Example - Poisson

f (x |λ) =
e−λλx

x!

Using the fact that x! = Γ(x + 1),

g = − log f (x |λ) = λ+ log Γ(x + 1)− x log λ

and so,
∂g

∂λ
= 1− x

λ
,

∂2g

∂λ2
=

x

λ2
,

E

[
∂2g

∂λ2

]
=

1

λ
,

and Jeffreys Prior ∝ λ−0.5.
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Objective Bayes Objective Priors

Jeffreys’ Independence Prior

Same as Jeffreys’ prior but using only diagonal of Fischer matrix.
Definition

π(θ) ∝

{
k∏

i=1

−E ∂
2 log f (x |θ)

∂θ2
i

} 1
2

log π(θ) =
1

2

{
k∑

i=1

log−E ∂
2 log f (x |θ)

∂θ2
i

}
+ c
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Objective Bayes Objective Priors

MDI and Jeffreys’ Prior Example - GPD

The Generalised Pareto Distribution is used to model the tail (extreme
values) of a distribution beyond a given threshold. If the threshold is
known we can subtract it from all the observations and consider it to be
zero. This makes the GPD a 2-parameter distribution.

f (x |γ, σ) =
1

σ

[
1 +

γx

σ

]− 1
γ
−1
, 0 < x <

{
−σ
γ if γ < 0

∞ if γ > 0

For γ < 1 we know that E (X ) = σ
1−γ and for γ < 0.5 we know that

Var(X ) = σ2

(1−γ)2(1−2γ)
.

Putting these together we see that E (X 2) = 2σ2

(1−γ)(1−2γ) .
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Objective Bayes Objective Priors

GPD Example p.2

In order to derive the objective priors we need some initial results.

Let A = E
[
log
(
1 + γx

σ

)]
, then A =

∫∞
0

log
(
1 + γx

σ

)
1
σ

(
1 + γx

σ

)− 1
γ−1

dx .
Applying integration by parts, A =[

log
(

1 +
γx

σ

)
(−1)

(
1 +

γx

σ

)− 1
γ

]∞
0

−
∫ ∞

0

γ

σ

(
1 +

γx

σ

)−1
[
−
(

1 +
γx

σ

)− 1
γ

]
dx

Applying L’Hôpital to the first term we find it to be zero:

lim
x→∞

log
(

1 +
γx

σ

)(
1 +

γx

σ

)− 1
γ .

= lim
x→∞

(
1 +

γx

σ

)−1 (
1 +

γx

σ

)− 1
γ+1

σ

.
= lim

x→∞

(
1 +

γx

σ

)− 1
γ

σ = 0

∴ A = γ

∫ ∞
0

1

σ

(
1 +

γx

σ

)− 1
γ−1

dx = γ

If γ < 0 then replace ∞ with −σ/γ everywhere. The L’Hôpital step becomes
unnecessary and we arrive at the same answer.
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Objective Bayes Objective Priors

GPD Example p.3

Let B = E
[
x
(
1 + γx

σ

)−1
]

=
∫∞

0 x
(
1 + γx

σ

)−1 1
σ

(
1 + γx

σ

)− 1
γ
−1

dx , then

B =
∫∞

0 x 1
σ

(
1 + γx

σ

)w
dx , where

w = − 1
γ − 1− 1 = −1+γ

γ − 1 = − 1
γ

1+γ
− 1.

Let γ∗ = γ
1+γ and σ∗ = σ

1+γ ⇒
1
σ = 1

1+γ
1
σ∗ , then

B = 1
1+γ

∫∞
0 x 1

σ∗

(
1 + γ∗x

σ∗

)− 1
γ∗−1

dx = 1
1+γ

σ∗

1−γ∗ = σ
1+γ

Now let C = E
[
x2
(
1 + γx

σ

)−2
]
, then

C =
∫∞

0 x2 1
σ

(
1 + γx

σ

)v
dx , where

v = − 1
γ − 1− 2 = −1+2γ

γ − 1 = − 1
γ

1+2γ
− 1.

Let γ̃ = γ
1+2γ and σ̃ = σ

1+2γ →
1
σ = 1

1+2γ
1
σ̃ , then

C = 1
1+2γ

∫∞
0 x2 1

σ̃

(
1 + γ̃x

σ̃

)− 1
γ̃
−1

dx

= 1
1+2γ

2σ̃2

(1−γ̃)(1−2γ̃) = 2σ2

(1+γ)(1+2γ)
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Objective Bayes Objective Priors

GPD Example p.4

log f (x) = − log σ −
(

1

γ
+ 1

)
log
(

1 +
γx

σ

)
logMDIP = − log σ −

(
1

γ
+ 1

)
E
[
log
(

1 +
γx

σ

)]
+ c

= − log σ −
(

1

γ
+ 1

)
A + c

= − log σ −
(

1

γ
+ 1

)
γ + c

= − log σ − 1− γ + c

∴ MDIP ∝ e−γ

σ
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Objective Bayes Objective Priors

GPD Example p.5

Left g = − log f (x) = log σ
(

1
γ + 1

)
log
(
1 + γx

σ

)
, then

∂g

∂γ
= −γ−2 log

(
1 +

γx

σ

)
+

(
1

γ
+ 1

)(
1 +

γx

σ

)−1 x

σ

∂g

∂σ
= σ−1 +

(
1

γ
+ 1

)(
1 +

γx

σ

)−1
(−γxσ−2)

= σ−1 − σ−2(1 + γ)(x)
(

1 +
γx

σ

)−1

∂2g

∂γ2
= 2γ−3 log

(
1 +

γx

σ

)
+ 2

[
(−γ−2)

(
1 +

γx

σ

)−1 x

σ

]
+

(
1

γ
+ 1

)(
1 +

γx

σ

)−2 (x
σ

)2
(−1)

= 2γ−3 log
(

1 +
γx

σ

)
− 2(γ−2σ−1)(x)

(
1 +

γx

σ

)−1

− (γ−1σ−2)(1 + γ)(x2)
(

1 +
γx

σ

)−2
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Objective Bayes Objective Priors

GPD Example p.6
∂2g

∂σ2
= −σ−2 + 2σ−3(1 + γ)(x)

(
1 +

γx

σ

)−1

− σ−4γ(1 + γ)(x2)
(

1 +
γx

σ

)−2

∂2g

∂γ∂σ
= σ−3(1 + γ)(x2)

(
1 +

γx

σ

)−2
− σ−2(x)

(
1 +

γx

σ

)−1

E

[
∂2g

∂γ2

]
= 2γ−3A− 2(γ−2σ−1)B − (γ−1σ−2)(1 + γ)C

= 2γ−2 − 2γ−2(1 + γ)−1 − 2γ−1(1 + 2γ)−1

=
2

(1 + γ)(1 + 2γ)

E

[
∂2g

∂σ2

]
= −σ−2 + 2σ−3(1 + γ)B − σ−4γ(1 + γ)C =

1

σ2(1 + 2γ)

E

[
∂2g

∂γ∂σ

]
= σ−3(1 + γ)C − σ−2B =

1

σ(1 + γ)(1 + 2γ)
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Objective Bayes Objective Priors

GPD Example p.7

Independence Jeffreys Prior ∝√
2(1 + γ)−1σ−2(1 + 2γ)−2

= σ−1(1 + 2γ)−1
√

2(1 + γ)−1

Jeffreys’ Prior ∝√
2(1 + γ)−1σ−2(1 + 2γ)−2 − σ−2(1 + γ)−2(1 + 2γ)−2

=
√

(1 + γ)−2σ−2(1 + 2γ)−1 = (1 + γ)−1σ−1(1 + 2γ)−0.5
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Objective Bayes Objective Priors

Reference Priors

Attempts to reduce the dependence between parameters induced by
the standard Jeffreys prior, which can cause problems.

Not as aggressive as the independence Jeffreys prior.

Tries to maximise the expected divergence between the posterior and
prior.

In one dimensional case this turns out to be the same as the Jeffreys.

With multiple parameters first do nuisance parameters conditional on
target parameter.

Reference Priors depend on the experimental design.
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Objective Bayes Objective Priors

Berkeley Lectures on Objective Priors

http://www.cs.berkeley.edu/~jordan/courses/

260-spring10/lectures/lecture7.pdf

http://www.cs.berkeley.edu/~jordan/courses/

260-spring10/lectures/lecture8.pdf

http://www.cs.berkeley.edu/~jordan/courses/

260-spring10/lectures/lecture9.pdf

http://www.cs.berkeley.edu/~jordan/courses/

260-spring10/lectures/lecture10.pdf
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Objective Bayes Objective Priors

Probability Matching Prior

Posterior probabilities of certain regions should coincide with their
coverage probabilities.

The idea is that we would like the 95% interval to cover the ‘true’
value 95% of the time.

The Probability Matching Prior (PMP) does this better than other
priors.

http://www.ucl.ac.uk/statistics/research/pdfs/rr252.pdf

http://www.utstat.utoronto.ca/reid/research/cjs.staicu_

reid.pdf
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Objective Bayes Objective Priors

Exercises 11

Previous Exercises Next Exercises

Note that not all priors can be derived for all distributions.

1 Derive objective priors for the Poisson distribution.

2 Derive objective priors for the Binomial distribution.

3 Derive objective priors for the Multinomial distribution.

4 Derive objective priors for the Beta distribution.

5 Derive objective priors for the Dirichlet distribution.

6 Derive objective priors for the Gumbel distribution.
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Objective Bayes Multivariate Simulation

Hierarchical Sampler

Suppose you have the joint density of 2 parameters that are
dependent.

Can’t just use marginals because then you lose dependence, which
breaks the posterior predictive distribution.

Sometimes you can decompose joint density into 1 marginal and at
least 1 conditional distribution, e.g.

f (θ1, θ2|x) = f (θ1|θ2, x)f (θ2|x)
f (θ1, θ2, θ3|x) = f (θ1, θ2|θ3, x)f (θ3|x)
f (θ1, θ2, θ3|x) = f (θ1|θ2, θ3, x)f (θ2, θ3|x)
f (θ1, θ2, θ3|x) = f (θ1|θ2, θ3, x)f (θ2|θ3, x)f (θ3|x)
etc.

Order is not important.

[Note that this subsection is not for examination, it is to help you
understand how multivariate simulation works.]
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Objective Bayes Multivariate Simulation

Hierarchical Sampler Example - Gamma Distribution

Gamma density: λα

Γ(α)x
(α−1)e−λx

MDI prior: λ
Γ(α)e

(α−1)ψ(α)−α where ψ() refers to the digamma
function.

Posterior: cλ(nα+2)−1e−λ
∑

xi Γ(α)−(n+1)eα[
∑

log xi+ψ(α)−1]−ψ(α)

∴ λ|α, x ∼ Gamma(nα + 2,
∑

xi )

with density (
∑

xi )
nα+2

Γ(nα+2) λ
(nα+2)−1e−λ

∑
xi

And, since π(α, λ|x) = π(λ|α, x)π(α|x), (by dividing) we see that

π(α|x) ∝ Γ(α)−(n+1)eα[
∑

log xi+ψ(α)−1]−ψ(α)Γ(nα+2)
(∑

xi

)−(nα+2)
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Objective Bayes Multivariate Simulation

Hierarchical Sampler - Gamma Posterior Simulation

The steps for simulating the Gamma posterior are then:

Simulate a vector of α’s by discretization.

Pick a set of candidate values around the moments estimate,
calculate density at these values, and
simulate from this discrete density.

For each α, simulate a value from a Gamma(nα + 2,
∑

xi ) density.

Put everything together in a matrix.

mean(x)^2/var(x) -> a

asv <- 10^( seq ( -0.7 ,0.9 ,0.005))*a

lfas <- asv*(sum(log(x)) + digamma(asv) - 1) - digamma(asv) - (n+1)

*lgamma(asv) - (n*asv +2)*log(sum(x)) + lgamma(n*asv +2)

fas <- exp(lfas - max(lfas))

fas <- fas/sum(fas)

sims <- matrix(1,nsim ,2)

sims[,1] <- asv[sample.int(length(asv),nsim ,prob=fas)]

sims[,2] <- rgamma(nsim ,n*sims[,1]+2,sum(x))
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Objective Bayes Multivariate Simulation

Hierarchical Sampler - Gamma Posterior SIR

The steps for simulating the Gamma posterior - alternative:

Simulate a vector of α’s by sampling-importance resampling.

lfas <- function(asv ,x,n) { asv*(sum(log(x)) + digamma(asv) -

1) - digamma(asv) - (n+1)*lgamma(asv) - (n*asv +2)*log(sum(

x)) + lgamma(n*asv+2) }

mean(x)^2/var(x) -> a

asv <- 10^( seq ( -0.7 ,0.9 ,0.005))*a

fas <- exp(lfas(asv ,x,n) - max(lfas(asv ,x,n)))

fas <- fas/sum(fas)

postmean <- sum(asv*fas)

postvar <- sum(fas*((asv -postmean)^2))

alpha <- postmean ^2/postvar

lambda <- postmean/postvar

candidates <- rgamma (10000 ,alpha ,lambda)

densratio <- post(candidates)/dgamma(candidates ,alpha ,lambda)

densratio <- densratio/sum(densratio)

sims <- matrix(1,nsim ,2)

sims[,1] <- sample(candidates ,10000 ,T,densratio)

sims[,2] <- rgamma(nsim ,n*sims[,1]+2,sum(x))
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Objective Bayes Multivariate Simulation

Hierarchical Sampler Example - Bayesian OLS Regression

The model is built in stages as follows:
1 Y ∼ N(Xβ, σ2)
2 β ∼ N(β̂ = (X ′X )−1X ′y ,Σβ = (X ′X )−1σ2

3 RSS
σ2 ∼ χ2

n−k where RSS =
∑n

i=1 (yi − ŷi )
2

Hence, to implement this model, we will proceed as follows:
1 Start by simulating a χ2

n−k value.
2 Divide RSS by the simulated value to get a random σ2 value.
3 Simulate a random set of βs (random Normals times the symmetric

matrix square root of Σβ , plus β̂).
4 Simulate random predictions (X times simulated βs, plus random

Normals times σ.

We repeat the above procedure above a large number of times in
order to obtain a set of vector samples from both the posterior and
posterior predictive distributions.
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Objective Bayes Multivariate Simulation

Hierarchical Sampler - Bayesian OLS Regression Code

sqrtm <- function(x) {

a <- eigen(x,T)

s <- a$vectors %*% diag(sqrt(a$values)) %*% t(a$vectors)

return(s) }

bayesreg <- function(y,x,newx=x,acc =9999) {

n <- nrow(x); k <- ncol(x); k1 <- (k + 1); if (!is.matrix(newx)) { newx <- matrix(newx ,

ncol=k) }; m <- nrow(newx);

basemodel <- lm(y ~ x)

res <- resid(basemodel)

b <- as.matrix(coefficients(basemodel))

if (any(x[,1]!=1)) { x <- matrix(c(rep.int(1,n),x),n); k1 <- (k + 1) }

if (any(newx[,1]!=1)) { newx <- matrix(c(rep.int(1,m),newx),m)}

sigs <- vector(length=acc)

betas <- matrix(nrow=k1, ncol=acc)

newy <- matrix(nrow=m, ncol=acc)

xx <- solve(t(x) %*% x)

rr <- sum(res^2)

for (i in 1:acc) {

u <- rchisq(1, n - k)

sig2 <- rr / u

covb <- xx * sig2

B <- b + (sqrtm(covb) %*% matrix(rnorm(k + 1) ,(k + 1)))

betas[,i] <- B

sig <- sqrt(sig2)

sigs[i] <- sig

newy[,i] <- newx %*% B + matrix(rnorm(m),m)*sig }

return(list(b=b,betas=betas ,r=res ,sigs=sigs ,newy=newy ,newyhat=apply(m2$newy ,1,mean))) }
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Objective Bayes Multivariate Simulation

Gibbs Sampler

The Gibbs Sampler is simply a theorem that says we can break down
a complicated multidimensional simulation problem into simpler
problems by going back and forth between the conditional
distributions.

Downside: simulations are not independent!

Instead we get a Markov Chain (each simulation depends on the
previous one but not the ones before that).

This is referred to as a Markov Chain Monte Carlo simulation
technique (MCMC).

We can counter the dependence by only considering every mth vector
of simulated values and dropping the first b vectors of simulated
values (called the burn-in period).
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Objective Bayes Multivariate Simulation

Gibbs - Example 1

Consider simulating from this joint density:

f (x1, x2) ∝
(
n

x1

)
xx1+α−1

2 (1− x2)n−x1+β−1

In this case the conditional distributions are much simpler:

f (x1|x2) = Binomial(n, x2)

f (x2|x1) = Beta(x1 + α, n − x1 + β)

Start with a random x2, simulate x1|x2, simulate x2|x1, . . .
after some time . . . simulate x1|x2, simulate x2|x1 and store latest
(x1, x2) vector,
simulate x1|x2, simulate x2|x1, simulate x1|x2, simulate x2|x1 and
store latest (x1, x2) vector,
simulate x1|x2, simulate x2|x1, simulate x1|x2, simulate x2|x1 and
store latest (x1, x2) vector,
repeat until the joint distribution converges in distribution.
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Objective Bayes Multivariate Simulation

Gibbs - Example 1
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Objective Bayes Multivariate Simulation

Gibbs - Example 1 Code

x2 <- runif (1); n <- 4; a <- 3; b <- 6

nsim <- 60; burnin <- 100; keepevery <- 2; totsim <- nsim*keepevery

+burnin

allsims <- matrix(0,totsim ,2)

for (i in 1: totsim) {

x1 <- rbinom(1,n,x2)

x2 <- rbeta(1,(x1+a),(n-x1+b))

allsims[i,] <- c(x1,x2)

}

sims <- allsims[-burnin:-1,]

sims <- sims [(1: nsim)*keepevery ,]

# Draw graphs to investigate convergence

plot(rep(1:totsim ,2),c(allsims),type=’n’,xlab=’Simulation number ’,

ylab=’Parameter values ’)

points (1: totsim ,allsims[,1],col=’blue’)

lines (1: totsim ,allsims [,1],col=’cyan’,lty=2)

lines (1: totsim ,allsims [,2],col=’magenta ’)

Sean vdMerwe (University of the Free State) Bayesian Analysis Semester 1 of 2020 137 / 222



Objective Bayes Multivariate Simulation

Gibbs - Example 1 Graph
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Objective Bayes Multivariate Simulation

Gibbs - Example 2 p.1

Consider the regression model Yi ∼ Gamma
(
µi = αi

λi
= x′iβ, λi

)
.

gammalpost <- function(X,y,B,l,prior=’mdi’) {

p <- length(B); n <- length(y); mu <- X%*%B; al <- mu*l

if (any((c(mu,l) <=0))) {

return(NaN)

} else {

if (prior == ’mdi’) {

logPosterior <- sum((al + 3)*log(l) - (2*lgamma(al)) + ((al -1)*(log(y) + digamma(al

) - 1)) - (l*y))

} else {

lik <- sum((al+1)*log(l) - lgamma(al) + (al - 1)*log(y) - l*y)

if (prior == ’unif’) {

logPosterior <- lik

} else {

A <- diag(c(1/(l^2) - mu/l - (mu^2)*trigamma(al)))

E <- matrix(0,p,p)

for (j in 1:p) {

for (k in 1:p) {

E[j,k] <- -sum(trigamma(al)*X[,j]*l*X[,k]*l) } }

D <- matrix(0,n,p)

for (j in 1:p) {

D[,j] <- X[,j]*(1 - log(l) - al*trigamma(al)) }

Fischer.Matrix <- rbind(cbind(A,D),cbind(t(D),E))

if (prior == ’Jeffreys ’) {

Jeff <- sqrt(det(Fischer.Matrix))

logPosterior <- log(Jeff) + lik
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Objective Bayes Multivariate Simulation

Gibbs - Example 2 p.2

} else {

lijp <- 0.5*sum(log(diag(Fischer.Matrix)))

logPosterior <- lijp + lik } } }

return(logPosterior) } }

lpostoptimwrapper <- function(P,X,y,prior=’mdi’) {

p <- ncol(X); B <- P[1:p]; l <- P[-(1:p)]

f <- gammalpost(X,y,B,l,prior)

if (!is.finite(f)) { return (1000) } else { return(-f) } }

gammaregpostsim <- function(X,y,nsim =200, prior=’mdi’,onelambda=TRUE ,burnin =100, dropfactor

=1) {

p <- ncol(X); n <- nrow(X)

if (onelambda) { ll <- 1 } else { ll <- n }

np <- p + ll

totsim <- burnin + (nsim*dropfactor)

sims <- matrix(0,totsim ,np)

sims[1,] <- optim(rep(1,np),lpostoptimwrapper ,X=X,y=y,prior=prior ,method="L-BFGS -B",lower

=c(rep(-Inf ,p),rep(0,ll)),upper=rep(Inf ,np))$par

bseq <- seq ( -1.2 ,2.8 ,0.02); lbseq <- length(bseq)

lseq <- 4^seq(-1,1,0.02); llseq <- length(lseq)
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Objective Bayes Multivariate Simulation

Gibbs - Example 2 p.3

for (i in 2: totsim) {

l <- sims[i-1,(p+1):np]

for (j in 1:ll) {

loptions <- l[j]*lseq

f <- rep(0,llseq)

for (k in 1:llseq) {

l[j] <- loptions[k]

f[k] <- gammalpost(X,y,B,l,prior) }

f[!is.finite(f)] <- -Inf

f <- exp(f-max(f))

f[!is.finite(f)] <- 0

f <- f/sum(f)

l[j] <- loptions[sample.int(llseq ,1,prob=f)] }

boptions <- t(sims[i-1,1:p,drop=F])%*%t(bseq)

B <- sims[i-1,1:p]

for (j in 1:p) {

f <- rep(0,lbseq)

for (k in 1:lbseq) {

B[j] <- boptions[j,k]

f[k] <- gammalpost(X,y,B,l,prior) }

f[!is.finite(f)] <- -Inf

f <- exp(f-max(f))

f[!is.finite(f)] <- 0

f <- f/sum(f)

B[j] <- boptions[j,sample.int(lbseq ,1,prob=f)] }

sims[i,] <- c(B,l) }

if (burnin > 0) {sims <- sims[-burnin:-1,] }

sims <- sims [(1: nsim)*dropfactor ,]

return(sims) }
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Objective Bayes Multivariate Simulation

Gibbs - Example 2 Graph

What happens if you force the simulation to start at a bad place?
(black line should be around 8, purple line around 4)
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Objective Bayes Multivariate Simulation

Metropolis-Hastings (MH) Sampler

MH provides an easy method to simulate from a multivariate distribution
(f ) and works as follows:

Start by picking a proposal/jump distribution q and then repeat the
following steps:

Simulate a jump candidate xc from q(x |xj)
Set xj+1 = xc if

q(xj |xc )f (xc )
q(xc |xj )f (xj )

> u, where u ∼ U(0, 1)

If q(x |xj) is symmetric then this simplifies to f (xc )
f (xj )

> u

Remember that you can pick q to suit your needs.
A q that is similar to f makes for faster convergence, but
a symmetric q makes calculations easier.
A good compromise is usually q(x |xj) = Np(xj ,Σ), where Σ is a
diagonal matrix with entries chosen to be close to the variances of f .

Another option is the independence sampler q(x |xj) = q(x), in which

case the rule is
q(xj )f (xc )
q(xc )f (xj )

> u
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Objective Bayes Multivariate Simulation

Metropolis-Hastings Example 1

Consider simulating the GPD posterior (with MDI prior).

log π(γ, σ) = −(n + 1) log σ − γ −
(

1
γ + 1

)∑n
i=1 log

(
1 + γxi

σ

)
The restriction that σ > 0 is a problem that needs addressing.

Let τ = log σ then the Jacobian is eτ = σ and the log posterior is

log π(γ, τ) = −γ −
(

1
γ + 1

)∑n
i=1 log (1 + γxie

−τ ) .

Consider proposal γc ∼ N(γj , 0.052) and τc ∼ N(τj , 0.5
2).

Since this proposal is symmetric we can use the basic Metropolis
sampler:
Accept θc = (γc , τc) if log π(θc)− log π(θj) > log uj .

Reasonable starting values: θ1 = (0.2, 0)

One remaining restriction: γ > −eτ
maxi xi
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Objective Bayes Multivariate Simulation

Metropolis-Hastings Example 1 Code

logposterior <- function(x,n,evi ,taw) {

lpost <- -(sum(log(x*evi*exp(-taw)+1))*(evi+1)/evi + evi + (n+2)*taw)

return(lpost) }

simpost <- function(sampl ,nsim =1000 , burn =100, threshold=0,eviguess =0.25, sigguess =1) {

sampl <- sampl[sampl >= threshold]-threshold

n <- length(sampl)

evi0 <- eviguess; lsig0 <- log(sigguess)

lpost0 <- logposterior(sampl ,n,evi0 ,lsig0)

i <- 0; stp <- nsim*2+burn

sims <- matrix(0,stp ,2)

mx <- max(sampl)

while (i < stp) {

evi1 <- evi0 + rnorm (1 ,0 ,0.05)

while (evi1 <= (-exp(lsig0)/mx)) { evi1 <- evi0 + rnorm (1 ,0 ,0.05) }

lsig1 <- lsig0 + rnorm (1,0,0.5)

while ((evi1 <= 0) && (exp(lsig1) <= (-evi1*mx))) { lsig1 <- lsig0 + rnorm (1 ,0 ,0.5) }

lpost1 <- logposterior(sampl ,n,evi1 ,lsig1)

if (lpost1 - lpost0 - log(runif (1)) > 0) {

evi0 <- evi1; lsig0 <- lsig1; lpost0 <- lpost1

i <- i + 1

sims[i,1] <- evi1

sims[i,2] <- exp(lsig1) } }

sims <- sims[-burn:-1,] # Throw away burn in simulations

sims <- sims [(1: nsim)*2,] # Discard every second simulation to reduce dependence

return(sims) }
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Objective Bayes Multivariate Simulation

Metropolis-Hastings Example 1 Results
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Objective Bayes Hypothesis testing

The classical p-value

The classical p-value is the probability of observing a value of a
statistic as or more extreme than what we observed from the data,
assuming the null hypothesis holds.

The null hypothesis is usually the neutral stance, often chosen as a
matter of convenience.

The idea is that a low p-value is unlikely under the null hypothesis
and thus provides evidence against it.

The null hypothesis is usually simple, facilitating clear mathematical
results and easy calculations.

The fallacy (logical error) is that evidence against the null hypothesis
is necessarily evidence for the alternative.

This led to the ban of the p-value from the journal Basic and Applied
Social Psychology.
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Objective Bayes Hypothesis testing

Bayes’ Theorem applied to hypotheses

In most studies we are trying to support the alternative.

If your case is different then simply swap H0 and H1 below.

P(H1|S ≥ s) = P(S≥s|H1)P(H1)
P(S≥s|H0)P(H0)+P(S≥s|H1)P(H1)

We can try to be objective and set P(H0) = P(H1) = 0.5, then

P(H1|S ≥ s) = P(S≥s|H1)
p+P(S≥s|H1) .

This might not always be appropriate, if 4 out of 5 previous studies
supported H0 then this should affect the prior probabilities.

The important thing to note here is that the absolute value of p is
irrelevant, only its size relative to the corresponding probability under
the alternative hypothesis.

No matter how unlikely a statistic is, if it’s just as unlikely under the
alternative then the posterior probability of H1 is still 0.5.
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Objective Bayes Hypothesis testing

The popularity of the p-value

In spite of the issues on the previous slides, the p-value is the most
popular way of reporting empirical results.

In general it can be very difficult or impossible to calculate
P(S ≥ s|H1) and so people just stop at the p-value.

The p-value, on the other hand, is often easy to calculate, and Bayes
can make this calculation even easier or more accurate.

Final warning though, calculating multiple p-values on the same
data usually invalidates any conclusions that are drawn, more so

as the number of tests increases, unless some appropriate
adjustment is made to account for this.
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Bayesian inference using sampling software Subjective priors

Why Subjective Priors

Let’s you incorporate expert knowledge into your model.

Let’s you put in fuzzy boundaries to stop nonsense results.

Proper subjective priors guarantee that the posterior will be proper.

Helps ensure your parameters are identifiable in some problems.

Allows for model comparison using Bayes Factors and DIC .

BUT regardless of what priors you use,

remember to repeat your analysis for different priors and see whether
the results change (sensitivity testing). See
http://onlinelibrary.wiley.com/doi/10.1002/sim.2112/pdf

for an example.
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Bayesian inference using sampling software Subjective priors

Easy Univariate Priors

For parameters without restriction: Normal prior with low precision.

Choose mean to be some ‘middle’ value WITHOUT considering the
data.
Some packages (like OpenBUGS) ask for the precision τ = 1

σ2 = σ−2

(sometimes defined as τ 2). R and STAN use the standard deviation.

For strictly positive parameters: Exponential prior with high mean
works well.

For probability parameters (0 < p < 1): Beta prior with low
parameter values.

Usually equal parameters so that the mean is 0.5.
This is a rare case where objective priors are proper and can be used in
subjective Bayes.
The Uniform prior works just fine.
In this case the Jeffreys prior is Beta(0.5, 0.5) and comes highly
recommended.
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Bayesian inference using sampling software Subjective priors

Gamma Prior

For strictly positive parameters, consider the Gamma(0.001, 0.001)
prior.

If θ ∼ Gamma(0.001, 0.001) then π(θ) is approximately proportional
to θ−1.

π(θ) = 0.0010.001

Γ(0.001) θ
−0.999 exp (−0.001θ) ≈ 1

1000θ
−1.1

θ−1 is the Jeffreys prior for scale or precision parameters in many
cases.

Consider the Normal density with mean 0 and precision τ
g = log f (x) = 0.5 log τ − 0.5τx2 + c
dg
dτ = 0.5τ−1 − 0.5x2 and d2g

dτ 2 = −0.5τ−2,

so −E
(

d2g
dτ 2

)
= 0.5τ−2 and

√
−E

(
d2g
dτ 2

)
∝ τ−1.

As an exercise, show that the same result holds for mean µ instead.
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Bayesian inference using sampling software Subjective priors

Easy Multivariate Priors

For parameters without restriction: Multivariate Normal prior with
low precision parameters.

For strictly positive parameters: Independent Exponential priors with
high means.

For probability parameters (0 < p < 1): Dirichlet prior with low
parameter values if they sum to one, or independent Beta priors if
they don’t.

And don’t forget that conjugate priors are always nice:

see http://en.wikipedia.org/wiki/Conjugate_prior
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Bayesian inference using sampling software What is Stan?

About Stan

https://mc-Stan.org/

“Stan is a state-of-the-art platform for statistical modeling and
high-performance statistical computation.”

You type out your model in Stan language
Then Stan does all the work, including:

Simulating the whole posterior distribution,
Simulating the approximate posterior, and/or
Maximum likelihood
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Advantages of Stan

You specify the model once and then fit it as much as you want,
however you want

It compiles your model into C++ code, so it’s very fast

Latest simulation methods: NUTS and HMC, better than old Gibbs
and MH

If your model is super complicated or simulation is too slow, then you
can do variational Bayes or Maximum Likelihood

You don’t change your model, just one line of code

Most importantly, if you want to change your model then you change
only the part of the model that needs changing

No changing software, no installing new packages, no changing
notation for a different ‘PROC’, etc.
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Main Advantage of Stan: Bayes

Stan automatically picks practical priors, so you don’t have to

But you can easily add your own priors if you like

Gives all the advantages of Bayes without effort:

Prediction is easy on any scale
Intervals are better because they incorporate more sources of variation
and don’t have to be symmetric
Probabilities can be estimated directly
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Why not use Stan for everything?

Basic tools are better for basic problems

If you really only want to do a standard regression, or fit a standard
distribution, then Stan is overkill

You don’t need to build a model if all you need is descriptive statistics
Stan is fast, but a standard regression is ‘instant’
Standard models have standard interpretations

Stan is new so it needs explanation

Stan is for modelling, so don’t use it for exploratory data analysis

Don’t use Stan for data mining tasks
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Meta analysis

What if you know the variance of each observation, but not the true
mean?

What if that mean depends on explanatory factors?

What if different levels of an explanatory factor have different
variances in their means?

Standard software does not allow us to answer these questions
properly

With Stan it doesn’t matter how weird the model is, as long as you
can write it down in standard notation

This model is rather complicated so we won’t go into it

I recommend you learn Stan with easy models
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Fitting a distribution

What if you want to fit a distribution to data, but it’s not in any
statistics package?

Or maybe you want to play with the priors?

Let’s look at two examples:
1 https://seanvdm.co.za/post/tfit1/
2 https://seanvdm.co.za/post/simulationsversterv1/
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Regression

What if you want to fit a logistic regression model and get prediction
intervals?

Let’s look at the famous Challenger O-ring failure question:

https:

//bookdown.org/egarpor/PM-UC3M/glm-challenger.html

https://seanvdm.co.za/post/challenger1/

Or how about a bi-phasic regression?

https://seanvdm.co.za/post/potatoes/
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Specifying the core model

Always start with the likelihood — the part of the model closest to
the data.

Second, specify priors for all the parameters in the likelihood.

Remember that constants and hyperparameters are specified separately
later.

Third, specify priors for any parameters that do not have them yet.

Fourth, specify functions of parameters you wish to monitor

Fifth, specify variables corresponding to the posterior predictive
distribution for any new data.

New data must be loaded with the old data.

Then add all the definitions and constraints needed for your model to
make sense.
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rstan

Let’s you work with the data in R, send everything to STAN and get
the results back in R where you can perform further calculations on
the posterior and posterior predictive distributions.

First, store your model

Can be done in RStudio or in a text file, e.g. ‘mymodel.stan’
Easiest is to use a STAN code block. Optionally store the resulting
model in a Rds file.

Second, create your data list by pointing to existing R variables.

STANdata <- list(STANvariable1=Rvariable1 , STANvariable2=

Rvariable2 , STANvariable3=Rvariable3)

Third, create a function called ‘inits’ that takes no inputs but gives as
output an R list consisting of named components with random (or
deterministic) starting values. You may specify none, some, or all
initial values.
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Loading rstan

Note that you must load rstan every time you open R with,
‘library(rstan)’.
If it is not installed:

Install Rtools first
Then in R:

install.packages(’rstan ’)

You should set the auto write option to TRUE for a bit of extra
speed in development
More importantly, set the number of cores you want to use

Align the number of chains you specify during sampling to this core
number for optimal efficiency
Generally it is a good idea to use most, but not all, of your CPUs power

library(rstan)

library(parallel)

mycores <- max(1,floor(detectCores(logical = FALSE)*0.75))

options(mc.cores = mycores)

rstan_options(auto_write = TRUE)
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Working with rstan

Use the ‘sampling’ function and specify, in any order:

model
data list
parameters to monitor, as text vector
number of iterations desired after thinning but before removing burn-in
number of chains (default of 3 is good)
burn-in period, say 20% to 50% (default) of iterations
thinning value, set to 2 or 3 if autocorrelation is bad, not higher
inits function
algorithm

simoutput <- sampling(mymodel , stan_data , pars=c(’alpha’,’beta

’), iter = 12000, chains = mycores)
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Working with results from STAN

Useful commands for working with the STAN object include:

traceplot — to see all the simulation patterns

extract — to get the simulations themselves

plot — to view plots

summary — to get a summary of the model

summary(simoutput)

traceplot(simoutput)

list_of_draws <- extract(simoutput)

hist(list_of_draws$beta)
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Assessing convergence

Autocorrelation graphs (correllograms) show how much each round of
the simulation depends on the previous round.

Use this to figure out which simulations to keep and which to throw
out IF you need an independent sample.

The idea is to start multiple chains at very different initial values and
see when they ‘join up’ in distribution.

Useful in complicated models (simple models converge almost
immediately).

The Monte Carlo error (MC error) is approximately the extra
uncertainty introduced by simulating instead of integrating
analytically.

A rule of thumb is to simulate until this is 5% or less of the
parameter’s standard deviation.

The Brooks, Gelman and Rubin Diagnostic (GRdiag) can be used to
determine the required burn-in.
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BUGS Example: Fitting a GPD

Consider the following GPD sample with threshold 0, scale (σ) 0.5 and
EVI (η) 0.3:

Histogram of GPD sample
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Let’s try to simulate the posterior of σ and η.
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GPD model code

The first step is to define the model and write it to a text file:

gpdmodel <- function (){

for (i in 1: samplesize) {

y[i] ~ dgpar(0, sigma , eta)

}

sigma ~ dgamma (0.0001 ,0.0001)

eta ~ dnorm (0.1 ,0.0001) }

write.model(gpdmodel ,’BUGStemp.txt’)

The next step is to put the data in a list:

BUGSdata <- list(y = y, samplesize = samplesize)

And to make a function that suggests initial values:

inits <- function () {return(list(sigma = rchisq (1,1), eta =

rnorm (1 ,0.1 ,0.05)))}

Sean vdMerwe (University of the Free State) Bayesian Analysis Semester 1 of 2020 173 / 222



Bayesian inference using sampling software Specifying models

GPD model run

And finally we’re ready to
run the model:

mymodel <- bugs(BUGSdata ,

inits , c(’eta’,’

sigma’), 22000, ’

BUGStemp.txt’, 5,

2000, 2, debug=TRUE)

The debug option lets us
view the results in BUGS,
like so:

model is syntactically correct

data loaded

model compiled

initial values loaded and chain initialized but another chain contains uninitialized variables

initial values loaded and chain initialized but another chain contains uninitialized variables

initial values loaded and chain initialized but another chain contains uninitialized variables

initial values loaded and chain initialized but another chain contains uninitialized variables

model is initialized

model is already initialized

model is updating

2000 updates took 1 s

model is updating

20000 updates took 21 s

CODA files written

Summary statistics

mean sd val2.5pc median val97.5pc sample

deviance 182.2 2.072 180.2 181.6 187.7 100000
eta 0.3007 0.1457 0.056 0.2868 0.6241 100000

sigma 0.6982 0.1175 0.4903 0.6902 0.9505 100000
Deviance information

Dbar Dhat DIC pD

y 182.2 180.4 184.1 1.868
total 182.2 180.4 184.1 1.868
History

iteration

2000 5000 10000 15000 20000

d
e
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ia
n
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e
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GPD results in R

Instead of using the BUGS results we can manipulate the results in R to
get custom histograms, scatter plots or intervals to our liking:

Posterior distribution of eta
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BUGS Example: Skew-t Regression
This is a regression model where we begin by assuming the random
errors have a t distribution with unknown degrees of freedom.

Subtract a random value (zi ) from each observation to indicate to
what extent that observation is affected by the skewness.

These random values are distributed truncated N(0, 1), such that
they are all strictly non-negative.

We also multiply these values by a general skewness parameter (δ),
which can take on any value in order to accommodate skewness both
ways (but not at the same time).

This gives us the following log likelihood (without unknown constant):

n log Γ
(
v+1

2

)
+ v

2 log(v)− log Γ
(
v
2

)
− log(σ)−(

v+1
2

)∑n
i=1 log

[(
yi−xiβ−δzi

σ

)2
]
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Skew-t Regression p.2

We implement this model in BUGS as follows:

model {

for (i in 1: samplesize) {

mu[i] <- beta0 + beta1*x[i] + delta*z[i]

y[i] ~ dt(mu[i], taou , v)

z[i] ~ dnorm (0,1)T(0,)}

v <- k + 2.2

beta0 ~ dflat ()

beta1 ~ dflat ()

taou ~ dexp (0.0004)

k ~ dexp (0.02)

delta ~ dnorm (0 ,0.001)

sigma <- 1/sqrt(taou) }
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Skew-t Regression p.3

The data is very easy:

BUGSdata <- list(x = x, y = y, samplesize = samplesize)

The initial values I chose are a little more involved, although you can make
them easy if you want to.

inits <- function () {return(list(beta0 = rnorm (1 ,0 ,0.001),

beta1 = rnorm (1 ,0 ,0.001), taou = 1, k = rchisq (1,80), z =

abs(rnorm(samplesize)), delta = rnorm (1 ,0 ,0.001)))}

Finally, we run the model:

mymodel <- bugs(BUGSdata , inits , ’skewtreg.txt’, parameters =

c(’beta0’,’beta1’,’sigma’,’v’,’delta’,’z’), n.chains=5,n.

iter =20000 , debug=TRUE)
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Skew-t Regression results

This particular fit seems like a success, as the blue lines are the true
parameter values.
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Beta-Binomial model with subject effect

Approximately, the following counts of surviving critters were observed out
of 50:

Control Treatment 1 Treatment 2
33 0 0
31 0 1
28 0 2
28 0 3
31 0 0
23 0 0
11 0 0
38 0 0

We assume each of the 24 subjects had their own Binomial probability
parameter that is Beta distributed but that each treatment group has the
same Beta parameters.
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Beta-Binomial model code

We are interested in the treatment efficacy 1− πT
πC

. The core of the code
is as follows:

for ( i in 1:8 ) {

controls[i] ~ dbin(pi0[i],50)

pi0[i] ~ dbeta(alpha0 ,beta0)

treatment1[i] ~ dbin(pi1[i],50)

pi1[i] ~ dbeta(alpha1 ,beta1)

treatment2[i] ~ dbin(pi2[i],50)

pi2[i] ~ dbeta(alpha2 ,beta2)

}

...

efficacy1 <- 1 - (alpha1/(alpha1+beta1))/(alpha0/(alpha0+beta0))

efficacy2 <- 1 - (alpha2/(alpha2+beta2))/(alpha0/(alpha0+beta0))
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Beta-Binomial model results

Normally Bayes models converge quickly, but I found that this model
required at least 100,000 Gibbs loops to converge.
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We can see that the posterior distribution of efficacy is very skew due to
being up against the limit of 1. This means we can construct shorter
intervals by using the Highest Posterior Density (HPD) method than by
using symmetric intervals.
The 95% HPD intervals are (0.9878; 1) and (0.9451; 0.9891).
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Dependent Binomial regression

Students were asked to watch a subtitled film and then to identify
which words from a list of 79 they had read in the film.

Of these 79, 15 were actually in the film and the other 64 were there
as a form of control.

Prior to the experiment, some students (at random) had received an
‘intervention’.

The question is whether the ‘intervention’ made a difference.

Turns out the answer is yes, but only if the statistician isn’t lazy:

If you only consider the accuracy of the students with respect to the 15
words in the film then the difference is far from significant (p-value is
89%),
but if you take all the data into account (using a more complex model)
then the difference is highly significant (p-value is 0.86%)!
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Dependent Binomial regression model

wordsmodel <- function (){

for (i in 1: nCONTROL) {

yTarCon[i] ~ dbin(piTarCon[i],15)

yConCon[i] ~ dbin(piConCon[i],64)

piTarCon[i] <- ilogit(alphaCon[i,1])

piConCon[i] <- ilogit(alphaCon[i,2])

alphaCon[i,1:2] ~ dmnorm(muCon [1:2], Taou [1:2 ,1:2])

}

for (i in 1: nTREATMENT) {

yTarTr[i] ~ dbin(piTarTr[i],15)

yConTr[i] ~ dbin(piConTr[i],64)

piTarTr[i] <- ilogit(alphaTr[i,1])

piConTr[i] <- ilogit(alphaTr[i,2])

alphaTr[i ,1:2] ~ dmnorm(muTr [1:2], Taou [1:2 ,1:2])

}

muCon [1:2] ~ dmnorm(mu[1:2], Covmat [1:2 ,1:2])

muTr [1:2] ~ dmnorm(mu[1:2] , Covmat [1:2 ,1:2])

Taou [1:2 ,1:2] ~ dwish(S[1:2 ,1:2] ,4)
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Dependent Binomial regression model results

After some additional calculations we get a posterior distribution for the
difference in the probability of correctly circling and not circling words as a
result of the ‘intervention’.

Contrast between probabilities of circling words
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Censored data example

The number of live ticks (out of 50) on a set of animals were counted
at times 3, 6, 12 and 24 hours.

We are interested in the mean time of ‘death’ of the ticks, given the
specific treatment.

The easiest model is to work on the log time scale and consider each
observation as random Normal value in the interval between when the
tick was observed on the animal and then not on the animal.

The mean of these random Normal variables depends on a fixed
treatment effect and a random animal effect.

We are interested in the time of death ratio — the exponent of the
difference between mean times of death on the log scale.

We use the I(lowerlimit,upperlimit) extension immediately after the
distribution to indicate the interval censoring.
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Censored data example code p.1

ticksmodel <- function (){

for (i in 1:502) { timeofdeath[i] ~ dnorm(expectedtod[i], SCALE

[treatgroup[i]])%_%I(lowerlog[i], upperlog[i]) }

for (i in 503:1376) { timeofdeath[i] ~ dnorm(expectedtod[i],

SCALE[treatgroup[i]])%_%I(, upperlog[i]) }

for (i in 1377:1600) { timeofdeath[i] ~ dnorm(expectedtod[i],

SCALE[treatgroup[i]])%_%I(lowerlog[i], ) }

for (i in 1:1600) { expectedtod[i] <- MU[treatgroup[i]] +

animal[idno[i]] }

for (i in 1:32) { animal[i] ~ dnorm(0, TAU) }

for (i in 1:4) {

SCALE[i] ~ dgamma (1.0E-3, 1.0E-3)

MU[i] ~ dnorm(0, 0.0001)

tod[i] <- exp(MU[i])

todvscontrol[i] <- exp(MU[i] - MU[1])

todvstreat1[i] <- exp(MU[i] - MU[2])

}

TAU ~ dgamma (1.0E-3, 1.0E-3)

}
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Censored data example code p.2

library(R2OpenBUGS)

ticksdata <- read.csv(’ticks.csv’,row.names =1)

attach(ticksdata)

BUGSdata <- list(idno=IDNO ,treatgroup=GROUPN ,lowerlog=LOWERLOG ,

upperlog=UPPERLOG)

initialtod <- apply(cbind(LOWERLOG ,UPPERLOG) ,1,mean ,na.rm=T)

write.model(ticksmodel ,’BUGStemp.txt’)

inits <- function () {return(list(MU=rep(0,4),SCALE=rep(0,4),TAU=3,

animal=rep (0 ,32),timeofdeath=initialtod))}

fittedticksmodel <- bugs(BUGSdata , inits , ’BUGStemp.txt’,

parameters = c(’tod’,’todvscontrol ’,’todvstreat1 ’), n.chains=2,

n.iter =22000 ,n.burnin =2000,n.thin=2, debug=TRUE)

attach.bugs(fittedticksmodel)

apply(tod ,2,summary)

apply(todvscontrol ,2,summary)

apply(todvstreat1 ,2,summary)

apply(todvscontrol ,2,function(x){mean(x>1)})

apply(todvstreat1 ,2,function(x){mean(x<1)})
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Student Plan Comparison — Introduction

This example is from the ‘Random Effects Models’ notes of Prof. Robert
Schall, UFS.

Students at the UFS Law Faculty normally undergo a 4-year degree program.

However, applicants who do not have the required minimum Admission
Point are enrolled in a 5-year program; that is, they join the regular 4-year
program after an initial year of preparatory classes.

In order to evaluate the effectiveness of the preparatory year, academic
results (module marks) of students in the two programs were compared.

Marks for 10 first year modules were available for the 2006 cohort of
students.

The objective of the analysis was to compare the mean module marks of the
two programs statistically.
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Student Plan Comparison — Missing data issue

A naive analysis approach would be as follows: For a given module, calculate the
average mark for students from the 5-year and 4-year programs, respectively, and
compare those marks using a two-sample t-test (say). However, the data set is
characterised by the fact that for many students some of the module marks are missing,
mostly because the student in question discontinued his or her studies, often for lack of
academic success. Simply ignoring the missing data and performing an analysis only of
the available data for a given module would cause the estimates of average module
marks to be biased upwards (because the missing data are likely to come from the
weaker students). While this upward bias applies to both the 4-year and the 5-year
program, the drop-out rate is higher among students in the 5-year program than among
students in the 4-year program. Therefore, the upward bias is stronger for the 5-year
program than for the 4-year program, and this differential bias causes a bias in the
estimate of the “5-year — 4-year” difference in average module marks.
It is plausible, and in fact clearly observed in practise, that the module marks for a given
student are highly correlated. Thus available marks for a given student can provide
information on module marks that are missing for that student. In order to exploit the
correlation of module marks and thus “recover” information on missing marks, we must
fit a model to all the module marks jointly. Missing data problems of this type can often
be handled successfully by fitting a mixed model.
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Student Plan Comparison — Fitted Effects

We are going to fit the following explanatory effects for the marks:

Module as fixed effect (different modules have different average
marks)

Program as fixed effect (the average marks in the 4-year and 5-year
programs differ)

Module.Program as fixed effect (the differences between 4-year and
5-year programs differ for different modules)

Student as random effect (students differ in their average module
mark, but more importantly, they also differ greatly in the variance of
their marks and ...)
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Student Plan Comparison — Data preparation

The first step is to prepare the data by shaping it and removing all the
empty students (we can’t estimate the variance of a student with less than
2 marks). We also have to count how many students are in each plan.

alldata <- read.csv(’academic.csv’)

attach(alldata)

names(alldata)

y <- matrix(mark ,10)

apply(y,2,function(x){sum(is.na(x)) >8})-> emptystudents

rev(order(emptystudents))-> roemptystudents

emptystudents <- roemptystudents [1:sum(emptystudents)]

y <- y[,-emptystudents]

n <- ncol(y)

planmat <- matrix(ACAD_PLAN ,10)

planmat <- planmat[,-emptystudents]

n1 <- sum(planmat [1,]== planmat [1,1])
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Student Plan Comparison — Model specification

We specify the students from the 2 programs separately because that is
the easiest way in this problem:
planmodel <- function () {

for (j in 1:n1) {

for (i in 1:10) {

y[i,j] ~ dnorm(mu[i,j],taou[j])

mu[i,j] <- module1[i] + student[j]

}

student[j] ~ dnorm (0 ,0.001)

taou[j] ~ dgamma (0.001 ,0.001)

}

for (j in (n1+1):n) {

for (i in 1:10) {

y[i,j] ~ dnorm(mu[i,j],taou[j])

mu[i,j] <- module2[i]+ student[j]

}

student[j] ~ dnorm (0 ,0.001)

taou[j] ~ dgamma (0.001 ,0.001)

}

for (i in 1:10) {

module1[i] ~ dflat()

module2[i] ~ dflat()

modulediffs[i] <- module1[i] - module2[i]

}

programdiff <- mean(modulediffs [1:10])

}

write.model(planmodel ,’BUGStemp.txt’)
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Student Plan Comparison — Running the model

BUGSdata <- list(y=y,n=n,n1=n1)

inits <- function () {return(list(module1=rep (0.25 ,10),module2=rep

(0.25 ,10),student=rep(0.25,n),taou=rep(1,n)))}

fittedplanmodel <- bugs(BUGSdata , inits , ’BUGStemp.txt’, parameters

= c(’programdiff ’,’modulediffs ’), n.chains=5,n.iter =25000 ,n.

burnin =5000,n.thin=2, debug=TRUE)

attach.bugs(fittedplanmodel)

hist(programdiff)

quantile(programdiff ,c(0.025 ,0.975))

colnames(modulediffs) <- module [1:10]

summary(modulediffs)

apply(modulediffs ,2,quantile ,c(0.025 ,0.975))

Clearly there is a significant difference in the marks in some modules.
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Exercises 12

Previous Exercises Next Exercises

1 Code the negative log likelihood as a function and minimise it in order
to get maximum likelihood estimates for the Skew-t regression model.

2 Compare the ML and posterior mean estimates to the true values of
the parameters that you chose for at least 100 samples.

3 Now halve the values you chose for σ and δ and compare the results.

4 Now double your chosen sample size and compare the results.

5 When (if ever) do you think you might chose this model over OLS
regression in your desired career?

6 Look online for at least two advantages of using the Bayes approach
that apply to your desired career path and discuss.
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Exercises 13
Previous Exercises Next Exercises

1 Adapt and implement the model from the BUGS LSAT example on
the marks obtained by the class for test 1 of this course. Which
student’s total mark changes the most when you properly take
question difficulty into account using this model?

2 Design a survey to pose to the rest of the class. It should have at
least 1 Likert scale question and then some demographic variables.
Do a Bayesian regression of the ordinal response on the demographic
variables.

3 Record, along with the rest of the class, the number of meals and
snacks you have each day for 1 specific week. Model the results as
Poisson given the subject and day effects.

4 Adjust the Student Plan Comparison script so that you also obtain
reasonable average marks for each module separated by Program.
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Coverage

We’ve already covered accuracy statistics.

Main principal: if model A gives shorter 95% intervals than model B
then model A is more accurate than model B.

However, it is very important to first check that the intervals cover
the target values as much as they say they do, otherwise such
comparisons are meaningless.

Basic check: do approximately 95% of the target values lie within
their respective 95% intervals?

OR: does the 95% interval cover the true value at least 95% of the
time?

Advanced check: do approximately w% of the target values lie within
their respective w% intervals, for say w = 1%, 3%, 5%, 7%, . . . , 49% ?

[Note that this subsection is important for Masters students. Honours
students only need to know DIC and it’s uses.]
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Coverage in practice

Consider an observation column vector y of dimension n × 1,

and an n × k matrix of simulated predictions (let’s call it K ).

First use the quantile function to get all desired quantiles
simultaneously (much more efficient),

then (vector) compare y to the quantiles and add up the results.

mu <- seq (0 ,1 ,0.01)

n <- length(mu)

y <- rnorm(n,mu ,1)

k <- 999

K <- matrix(rnorm(n*k,rep(mu ,k) ,1),n,k)

qs <- t(apply(K,1,quantile ,c(0.025 ,0.975)))

(coverage <- mean (((qs[,1]<y) & (y<qs[,2]))))
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Distribution matching

In general, if model A produces a posterior predictive distribution that
more closely matches the data than that of model B then model A is
more accurate than model B.

How do we measure ‘more closely matches’?

Visually, using an empirical CDF (ECDF) step plot or an empirical QQ
plot, or
Analytically, using a two sample ECDF test like the
Kolmogorov-Smirnov (KS) test.

Useful R commands include ks.test, ecdf, plot, qqplot.
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Information Criteria

None of the previous statistics take model complexity into account.

More complex models tend to be more accurate on existing data
because they are more complex, not because they are better models.

However, this accuracy does not always carry over to new data, even
if the new data is from the same source and nothing has changed in
the Data Generating Process (DGP).

A model that works just as well on unseen data as it did on the data
used to build it is said to generalise well.

Models that do not generalise well are said to be guilty of overfitting.

More complex models are often more expensive to build, implement
and run and often more difficult to understand or interpret.

When comparing models we should take the complexity of the model
into account.
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Information Criteria Basics

Models are simplifications of reality.

Information criteria are based on information entropy — the relative
information lost when a given model is used to approximate the DGP.

All information criteria are relative! They are only useful if you have
more than one of the same type to compare to each other.

The number you calculate has no meaning.
It has no units and no scale.
There is no such thing as a big or small IC.

Basic terminology: Let

L̂ be the maximum value of the likelihood.

Not the point at which it is a maximum, but the value of the likelihood
at that point.

k be the number of parameters in the model.
n be the number of observation vectors.
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Standard Information Criteria

Akaike information criterion (AIC)
AIC = 2k − 2 log(L̂)
Small penalty for extra variables.
Penalty is not related to sample size and becomes meaningless in large
samples.
In the case of linear regression −2 log(L̂) = n log

(
RSS
n

)
.

Bayesian information criterion (BIC)
BIC = k log(n)− 2 log(L̂)
Strong penalty for extra variables.

Deviance information criterion (DIC)
Define the Deviance D(θ) = −2 log(p(θ|y)) + c where c is a
meaningless constant.
Define D̄ = Eθ[D(θ)] and pD = D̄ − D(E (θ)), then DIC = pD + D̄
(Spiegelhalter et al., 2002).
pD denotes the effective number of parameters.
For hierarchical models and complex models with lots of correlated
parameters (if 2 parameters do the same thing then counting them
both doesn’t make sense).
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Calculating Information Criteria

All information criteria can be calculated manually if you can
maximise the likelihood (or simulate from the posterior in the case of
the DIC ).

For built-in models in R you can use the AIC command.

In BUGS you can get DIC as part of the output (from a second run
after burn-in).

In all cases, the lower value of the IC indicates the more
parsimonious (better) model.

Alternatively, you can get the Bayes Factor of two models and see if it
is much bigger than 1 (bigger than 10 is considered strong).

BF1,0 =
p(y|M1)

p(y|M0)
=

∫
p(θ1|M1)p(y|θ1,M1)dθ1∫
p(θ0|M0)p(y|θ0,M0)dθ0
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Bayes factors

Can also be interpreted (and sometimes calculated) as the posterior
odds divided by the prior odds.

BF1,0 =

P(M1|y)
P(M0|y)

P(M1)
P(M0)

It tries to put all the focus on the data and which model the data
supports (taking away the prior information).

Can be very difficult to calculate outside of simple problems.

In difficult problems we focus on posterior probabilities for comparing
parameter options and information criterion for comparing models.

Nevertheless, it is possible to calculate Bayes factors for complex
problems using pseudo-priors or fractional likelihoods (where some
data is incorporated into the prior). There are also intrinsic Bayes
factors and cross validation Bayes factors.
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Bayes factors example

This example is from Ando (2010)

Suppose we have 11 independent drivers and we count their accidents
per year.

We assume the accidents are Poisson but we have 2 priors in mind:
1 Gamma(2, 2), implying a mean of 1 and s.d. of 0.71.
2 Gamma(10, 10), implying a mean of 1 and s.d. of 0.32.

We observe that 6 had zero accidents, 4 had one accident and 1 had
three accidents.

We thus arrive at the following posteriors:
1 Gamma(9, 13), implying a mean of 0.69 and s.d. of 0.23.
2 Gamma(17, 21), implying a mean of 0.81 and s.d. of 0.2.

So which one is better, and how much better?
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Bayes factors example p.2

First consider model 0 on its own and try to obtain p(y|M0).

p(θ0|y,M0) = p(y|M0)−1p(θ0|M0)p(y|θ0,M0)

∴ 139

Γ(9)θ
8
0e
−13θ0 = p(y|M0)−1 22

Γ(2)θ
1
0e
−2θ0e−11θ0

θ7
0

0!0!0!0!0!0!1!1!1!1!3!

∴ p(y|M0) = 22Γ(9)
139Γ(2)3!

≈ 0.000002534773

Similarly, 2117

Γ(17) = p(y|M1)−1 1010

Γ(10)
1
3!

∴ p(y|M1) ≈ 0.000003198728

And BF1,0 ≈ 1.26

Meaning that model 1 is slightly more supported by the data than
model 0 but the difference is too small to trust.
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Bayesian Goodness-of-fit

People like a good p-value and it is understood outside statistics.

So the question arises, ‘Can we calculate a p-value for our model?’

The answer is ‘possibly’, but only if we rephrase the question to:

Assuming H0 : the data did originate from the proposed model, what
is the probability of observing a value of a test statistic at least as
large as the one observed?

In order to ensure that this probability behaves like an actual p-value
we must obtain the probability by integrating over all possible
replicate samples obtained from the posterior predictive distribution.

Can only be done by simulation and very slow.

Always remember that frequentist models assume a single true value
for each parameter, but Bayes models don’t!
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Exercises 14

Previous Exercises

1 Find a regression example from any undergraduate course you did that had
at least 30 observations. Implement the model in BUGS twice, first using
Normal errors and then assuming t errors. Compare the two models using
RMSE, coverage and DIC.

2 Simulate two sets of numbers, the first should be 12 numbers from a N(0, 1)
distribution and the second should be 18 numbers from a N(3, 4)
distribution. Do a standard two sample t test, a Welch t test and then a
Bayesian t test in BUGS assuming different variances for the two samples.
Which one produces the smallest p-value?

3 Adjust the Student Plan Comparison script so that Student acts as a fixed
effect. Is this a better or worse model?
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General implementation

Consider an observation matrix Y of dimension n × p.

We can allocate a Multivariate Normal distribution to Y, allowing us
to model the covariance matrix explicitly.

Common practice is to use a Wishart distribution for Σ−1.

Care must be taken to specify good initial values for the precision
matrix, as the results are sensitive to the prior.

For example, consider the following random Bivariate Normal
observations:

library(MASS)

N <- 30

Y <- mvrnorm (30,c(1,2),matrix(c(2 ,0.5 ,0.5 ,3) ,2,2))
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Bivariate Normal example

The following code will fit a Bivariate Normal distribution to the
observed data:

library(R2OpenBUGS)

mvnormModel <- function () {

for (i in 1:N) {

Y[i,1:2] ~ dmnorm(muvec [1:2], Taou [1:2 ,1:2])

}

muvec [1:2] ~ dmnorm(initialMu [1:2], vagueTaou [1:2 ,1:2])

Taou [1:2 ,1:2] ~ dwish(R[1:2 ,1:2] ,2)

}

write.model(mvnormModel ,’mvnormModel.txt’)

BUGSdata <- list(Y=Y, N=N, initialMu=rep(0,2), vagueTaou=diag(rep

(0.001 ,2)),R = 2*cov(Y) )

inits <- function () {list(muvec=colMeans(Y),Taou=solve(cov(Y)))}

output <- bugs(BUGSdata ,inits ,c(’muvec ’,’Taou’) ,20000,’mvnormModel.

txt’,debug=TRUE)
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Combining two models

When data exhibits properties that can be described as a mixture of
two models then it can be beneficial to fit both models at once.

This approach is critical when the two models have some parameters
in common, while other parameters may differ.

For example, situations where you have a changing mean or a
relationship that differs between groups on the one hand; while the
variance is constant throughout on the other hand.

Another example would be where some of your observations are
considered stable while others are considered unstable or extreme.

The basic approach is to include a line in the BUGS code of the
following form:

CombinedParameter[i] <- (model1)*switch[i] + (model2)*(1-switch[i])
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Deterministic switches

The most basic form of switch is the deterministic switch.

It is used when you know exactly which observations belong to each
model.

This is equivalent to having two loops, one for each set of
observations, but more concise.

It is implemented in the data section (not in the BUGS code) by
creating a vector of 1’s and 0’s, one value for every observation, 1
meaning Model 1 and 0 meaning Model 2.

For example, if you have 100 observations for Model 1, then 200
observations for Model 2 (sorted) then this code will work:

BUGSdata <- list(switch=rep(c(1,0),c(100 ,200)))
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Random single switch

When you data exhibits a changepoint, where it moves from Model 1
to Model 2 at some single point, but this point is random, or
unknown, then we use a random switch.

This is implemented using a position variable that is limited to [0, 1].
A value of 0 indicates only Model 2 is used, a value of 1 indicates
only Model 1 is used, and a value between 0 and 1 indicates the
proportion of observations from left to right that belong to Model 1.

We include this code at the end of the likelihood loop:

switch[i] <- step((N*pos)-i)

}

pos ~ dbeta (0.5 ,0.5)
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Model mixing

The switch can take on values between 0 and 1, allowing smooth
movement from one model to another.

This can be deterministic, for example:

switch[i] <- i/N

Or it can be random (α, β can have models):

switch[i] ~ dbeta(alpha ,beta)

We can also use the switch to perform model selection, by moving it
outside the likelihood loop. We can use a Bernoulli distribution for
hard selection, or a Beta distribution to allow a flexible model
combination.

switch ~ dbern(pi)

# OR

switch ~ dbeta(alpha ,beta)
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Example of a switching model

In this example we have a time series that changes pattern abruptly
near the middle, but has the same variance throughout. We attempt
to model it using a single random switch combined with an AR(1)
format.

mydata <- read.csv(’BrokenTS.csv’,row.names =1)

attach(mydata)

x <- x[1:240]

x <- ts(x)

windows (6,4)

par(mar=c(4 ,4 ,0.1 ,0.1))

plot(x)
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Example of a switching model — BUGS code

library(R2OpenBUGS)

TSmodel <- function () {

for (i in 2:N) {

y[i] ~ dnorm(mu[i],taou)

mu[i] <- mu1 + (betaA*i + phiA*mu[i-1])*switch[i] + (betaB*i +

phiB*mu[i-1])*(1-switch[i])

switch[i] <- step((N*pos)-i)

}

pos ~ dbeta (0.5 ,0.5)

y[1] ~ dnorm(mu1 ,taou)

mu[1] <- mu1

mu1 ~ dnorm (0 ,0.001)

betaA ~ dnorm (0 ,0.001)

betaB ~ dnorm (0 ,0.001)

phiA ~ dnorm (0 ,0.001)

phiB ~ dnorm (0 ,0.001)

taou ~ dgamma (0.001 ,0.001)

}

write.model(TSmodel ,’TSmodel.txt’)

BUGSdata <- list(y=x,N=length(x))

inits <- function () {list(taou=2/var(x))}

bugs(BUGSdata ,inits ,c(’mu’,’taou’) ,3000,’TSmodel.txt’,debug=TRUE ,n.

chains =2)
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Portfolio I

1 This is an individual assignment in which you explain everything you learned
through the course.

2 This may be submitted on paper or electronically, but not both (either scan
your paper notes or print the electronic notes).

3 It should be a mixture of rough notes and papers (like your class scribbles
and test & assignment submissions) on the one hand; and neat summaries
of what you learned from each activity on the other hand.

4 It must explain which parts of the course you found easy and which parts
you struggled with, and why.

Some parts of the work are just difficult, but most often students struggle
because they had other priorities and didn’t invest the appropriate effort.
You could mention how your background prepared you for some parts better
than others.
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Portfolio II

5 You should discuss how you overcame any difficulties you encountered in the
course.

6 You may also make constructive suggestions for improving the course. For
example, can you think of ways to increase how much everybody learns
without making the course more difficult?

7 NB: Keep this assignment in mind throughout the course so that it’s easy at
the end. Keep notes throughout the course.

8 The portfolio will be assessed on how well you captured what your learnt,
not how much you actually learned. As long as you are organised and
methodical then you will get a good result. Being organised and keeping an
audit trail of your work is incredibly important in industry.
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The end, for now...

Thank you for doing this course.

I hope you learned something useful!

Click here to quit (only works in Acrobat)
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