
Page 1 of 8 
 

STSB6816 Test 1 of 2023 

Mathematical Statistics and Actuarial Science; University of the Free State 

2023/04/20 

Time: 180 minutes; Marks: 50 

 

MEMORANDUM 
 

Instructions 
• Answer all questions in a single R Markdown document. Please knit to PDF or Word at the 

end and submit both the PDF/Word document and the “.Rmd” file for assessment, in that 
order. 

• Label questions clearly, as it is done on this question paper. 

• All results accurate to about 3 decimal places. 

• Show all derivations, formulas, code, sources, and reasoning. 

• Intervals should cover 95% probability unless stated otherwise. 

• No communication software, devices, or communication capable websites may be accessed 
prior to submission. You may not (nor even appear to) attempt to communicate or pass 
information to another student. 

Introduction 

The data is provided at https://ufs.blackboard.com. It consists of the flight times (in seconds) of 
paper air planes constructed and thrown by primary school learners. 

These times are assumed to follow a Gompertz distribution. You are encouraged to fit the Gompertz 
distribution to these times as part of this process, although other approaches will get partial credit. 

The Gompertz distribution has density function 

𝑓(𝑡) = 𝛼exp(𝜆𝑡)exp [−
𝛼

𝜆
(exp(𝜆𝑡) − 1)] 

and survival function 

𝑆(𝑡) = exp [−
𝛼

𝜆
(exp(𝜆𝑡) − 1)] 

In order to establish that you fit the distribution correctly, you are instructed first to generate a 
sample that you know is from a Gompertz distribution and apply your fitting approach to this 
simulated sample. The idea is that should you get the same parameters out that you put in, then 
your approach will have more credibility on the real data. 

https://ufs.blackboard.com/


Page 2 of 8 
 

Question 1 

1.1) Derive the inverse survival function or inverse CDF (your choice). [4] 

cat("$$\\begin{aligned} 
u &= \\exp\\left[-\\frac{\\alpha}{\\lambda}(\\exp(\\lambda t) - 1)\\right] \\\\ 
\\log (u) &= -\\frac{\\alpha}{\\lambda}(\\exp(\\lambda t) - 1) \\\\ 
1 - \\frac{\\lambda\\log (u)}{\\alpha} &= \\exp(\\lambda t) \\\\ 
\\log\\left[1-\\log (u)\\lambda\\alpha^{-1}\\right]\\lambda^{-1} &= t 
\\end{aligned}$$") 

𝑢 = exp [−
𝛼

𝜆
(exp(𝜆𝑡) − 1)]

log(𝑢) = −
𝛼

𝜆
(exp(𝜆𝑡) − 1)

1 −
𝜆log(𝑢)

𝛼
= exp(𝜆𝑡)

log[1 − log(𝑢)𝜆𝛼−1]𝜆−1 = 𝑡

 

Set S or F equal to u [2]. Attempt to solve for t [1]. Get the right function [1]. 

1.2) Using the inverse survival function or inverse CDF (your choice), generate a sample of size 500 
from a Gompertz(0.3, 0.1) distribution. [4] 

[Using an established package to generate the sample instead of your own will earn 2 out of 4 
marks; while using an established package in addition to your own and showing that they match 
within the simulation error will earn 5 out of 4 marks.] 

library(tidyverse) 

rGomp <- function(n = 1, lambda = 1, alpha = 1) { 
  log(1 - log(runif(n))*lambda/alpha)/lambda 
}  
 
nsims <- 10000 
sims <- data.frame(Source = rep(c('Us', 'Them'), each = nsims),  
                   Values = c(rGomp(nsims, lambda = 0.3, alpha = 0.1),  
                              DescTools::rGompertz(nsims, shape = 0.3, rate = 0.1))) 
sims |> ggplot(aes(x = Values, colour = Source)) + geom_density() 



Page 3 of 8 
 

 

nsims <- 500 
x <- rGomp(nsims, lambda = 0.3, alpha = 0.1) 

Generating a sample as indicated by any means [2]. Using own function that matches derivation [2]. 
Showing that the established package gives the same results [1 bonus]. 

1.3) Fit a Gompertz distribution to the simulated times. Give parameter estimates, with uncertainty, 
for your fit (trace plots showing good convergence are highly recommended for simulation fits). 
[11] 

Hint: As the Gompertz distribution is not one of the standard distributions in Stan, it is 
recommended that you add the following code to the start of your Stan model. This will allow you to 
sample from the Gompertz in the usual way (i.e. y[i] ~ Gompertz(lambda, alpha)). Alternatively, 
specify the full log posterior in Stan directly to the model using target += and then Stan math 
functions. Stan’s math functions are similar to R’s math functions. 

functions { 
  real Gompertz_lpdf(real y, real lam, real a) { 
      return log(a) + lam*y - (exp(lam*y)-1)*a/lam; 
  } 
} 

library(rstan) 
mycores <- 3 
options(mc.cores = mycores) 

// This Stan block defines a Gompertz model by Sean van der Merwe, UFS 
functions { 
  real Gompertz_lpdf(real y, real lam, real a) { 
      return log(a) + lam*y - (exp(lam*y)-1)*a/lam; 
  } 
} 
data { 
  int<lower=1> n;           // number of observations 
  real<lower=0> y[n];   // observations 

0.00

0.05

0.10

0.15

0 3 6 9

Values

d
e
n
s
it
y Source

Them

Us



Page 4 of 8 
 

} 
// The parameters of the model 
parameters { 
  real<lower=0> a;      // alpha            
  real<lower=0> l;      // lambda    
} 
model { 
  for (i in 1:n) { 
    y[i] ~ Gompertz(l, a); 
  } 
} 

saveRDS(GompertzModel, file = 'GompertzModel.Rds') 

ModelFitSims <- sampling(GompertzModel, list(n=length(x), y=x), iter = 10000, chains 
= mycores) 

pars_of_interest <- c('l', 'a') 
ModelFitSims |> traceplot(pars = pars_of_interest)  

 

summary(ModelFitSims, pars = pars_of_interest)$summary |> kable(digits = 3) 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

l 0.299 0 0.020 0.259 0.286 0.299 0.313 0.338 3269.357 1.001 

a 0.094 0 0.009 0.078 0.088 0.093 0.099 0.112 3384.431 1.001 

Defining the Gompertz model correctly: function/target [1], data [1], parameters [2], likelihood [2]. 
Fitting the Gompertz model to the simulated data [2], giving parameter estimates with uncertainty [2] 
and trace plot showing convergence [1]. An alternative, sensible, and correctly implemented model can 
earn (data 1 + pars 1 + lik 1 + fit 1 + ests 1 + trace 1) = 6 marks; while a non-Bayesian implementation can 
get up to 10 marks here (but will forfeigt later marks). 

1.4) For each parameter, report how many absolute standard deviations it is away from the known 
values used to simulate the sample. Comment on whether the values are reasonable. [5] 

l a

5000 6000 7000 8000 9000 10000 5000 6000 7000 8000 9000 10000

0.06

0.08

0.10

0.12

0.25

0.30

0.35

chain

1

2

3



Page 5 of 8 
 

simssims <- rstan::extract(ModelFitSims) 
c( 
  lambda = abs(mean(simssims$l) - 0.3)/sd(simssims$l), 
  alpha = abs(mean(simssims$a) - 0.1)/sd(simssims$a) 
) |> round(4) 

|  lambda  alpha  
|  0.0340 0.7139 

Summarising the requested statistics neatly [3]. Comment saying that it is not multiple standard 
deviations (less than 2) and thus fairly reasonable [2]. 

1.5) Import the data set into R and explore it visually. You could use a histogram or density plot and 
discuss what you see. [4] 

"STSB6816Test1Data2023.xlsx" |> openxlsx::read.xlsx("TestData") -> d 

par(mar=c(5,5,1,1)) 
d$Time |> hist(col = 'purple', main = '', xlab = 'Time') 

 

Loading data [1], histogram/density plot [1], and discussion saying something about skewness or that 
some planes flew really long and well while most crashed in an expected fashion [2]. 

1.6) Fit a Gompertz distribution to the observed times. Give parameter estimates, with uncertainty, 
for your fit. [6] 

ModelFitData <- sampling(GompertzModel, list(n=nrow(d), y=d$Time), iter = 10000, 
chains = mycores) 

ModelFitData |> traceplot(pars = pars_of_interest)  

Time

F
re

q
u

e
n

c
y

0 2 4 6 8 10 12 14

0
1

0
2

0
3

0



Page 6 of 8 
 

 

summary(ModelFitData, pars = pars_of_interest)$summary |> kable(digits = 3) 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

l 0.157 0.001 0.036 0.085 0.134 0.158 0.182 0.225 4702.600 1.001 

a 0.170 0.000 0.029 0.118 0.149 0.168 0.188 0.232 4744.076 1.001 

Fitting the Gompertz model to the observed data [3], giving parameter estimates with uncertainty [2] 
and trace plot showing convergence [1]. 

1.7) Draw a quantile-quantile plot showing the quantiles of the observed data against the quantiles 
of the posterior predictive distribution of the next random throw. Comment on the quality of the fit, 
both the discrepancies and possible sources of discrepancies. [7] 

datasims <- rstan::extract(ModelFitData) 
preds <- rGomp(length(datasims$l), datasims$l, datasims$a) 
qseq <- seq(0.01, 0.99, 0.02) 
plot(quantile(preds, qseq), quantile(d$Time, qseq),  
     main='Posterior Predictive QQ Plot',  
     xlab = 'Predicted Quantiles', ylab = 'Observed Quantiles', 
     col = 'darkred') 
lines(c(0,13), c(0,13), col = 'purple') 

l a

5000 6000 7000 8000 9000 10000 5000 6000 7000 8000 9000 10000

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

chain

1

2

3



Page 7 of 8 
 

 

Drawing the QQplot in any sensible way [4]. Saying that the fit is not good [1]: short flights were longer 
than expected, and long flights were shorter than expected, except for one extreme value distorting the 
results [2]. 

1.8) Consider 10 random future throws. What is the probability that the one that flies the furthest 
stays in the air for more than 8 seconds? [5] 

Hint: You must predict sets of 10 throws, then check whether the longest flight time of the 10 is 
longer than 8 seconds. You must do this at least 1000 times and average the results to get a 
probability estimate. 

longest <- preds |> matrix(10) |> apply(2, max) 
mean(longest > 8) 

|  [1] 0.5253333 

Combining enough predictions in an organised fashion [2], finding the longest time of each set [1], and 
getting the final probability [2]. 

1.9) Is your probability above sensible based on the observed data? First give an instinctive answer 
then calculate a bootstrap/resampling estimate using the data alone and compare. [4] 

longest <- replicate(2000, {d$Time |> sample(10, replace = TRUE) |> max()}) 
mean(longest > 8) 

|  [1] 0.3915 

First, we see that the probability is near 50%, indicating an uncertain model trying to estimate 
something quite possible but uncertain [1]. Then we see that the bootstrap approach [2] gives a similar 
result [1], lending credibility to our result. 

 

0 2 4 6 8 10

2
4

6
8

1
0

1
2

Posterior Predictive QQ Plot

Predicted Quantiles

O
b

s
e

rv
e

d
 Q

u
a

n
ti
le

s



Page 8 of 8 
 

Points total 

The points on the test add up to 50 

 


