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STSB6816 Test 3 of 2023 

Mathematical Statistics and Actuarial Science; University of the Free State 

2023/06/13 

Time: 180 minutes; Marks: 50 

 

MEMORANDUM 
 

Instructions 
• Answer all questions in a single R Markdown document. Please knit to PDF or Word at the 

end and submit both the PDF/Word document and the “.Rmd” file for assessment, in that 
order. 

• Label questions clearly, as it is done on this question paper. 

• All results accurate to about 3 decimal places. 

• Show all derivations, formulas, code, sources, and reasoning. 

• Intervals should cover 95% probability unless stated otherwise. 

• No communication software, devices, or communication capable websites may be accessed 
prior to submission. You may not (nor even appear to) attempt to communicate or pass 
information to another student. 

Question 1 

The data is provided at https://ufs.blackboard.com. It contains data from an experiment on the 
“Pharmacokinetics of Theophylline”. 12 subjects (Subject) were each weighed (Wt) and given a 
slightly different dose (Dose) of this substance at time 0. Their blood concentration (conc) was 
measured over time (Time). Your goal is to predict the log blood concentration curve of a random 
future subject. 

We will assume that the log concentration curves follow the formula 𝜂 + 𝜆𝑡. 𝜂 (eta) measures where 
the curve would start if absorption was instantaneous, and 𝜆 (lambda) measures how the 
concentration drops over time (𝑡). 

We can then construct regression Model 1 by assuming an error distribution around the curve: 

𝑦𝑖 ∼ 𝑡(𝜈, 𝜇𝑖, 𝜎),  𝑖 = 1…𝑛
𝜇𝑖 = 𝜆𝑠𝑖𝑡𝑖 + 𝜂𝑠𝑖
𝜆𝑗 ∼ 𝑁(𝜆0, 𝜏1

2),  𝑗 = 1…𝑛𝑠

𝜂𝑗 ∼ 𝑁(𝜂0, 𝜏2
2)

ln𝜋(𝜈, 𝜎, 𝜏1, 𝜏2, 𝜆0, 𝜂0) = −2log𝜎 + log𝜈 − 3log(𝜈 + 0.75) − 2log𝜏1 − 2log𝜏2 + 𝑘
where 𝑠𝑖  denotes the subject number of observation 𝑖

𝑛𝑠  denotes the number of subjects
𝑛  denotes the number of observations in total

 

https://ufs.blackboard.com/
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Note that Model 1 does not consider any explanatory variables other than the random effects 
induced by the assumption that each subject has their own curve. We are interested in the average 
curve, that will hopefully be indicative of a random future subject. Usually, one might model the 
correlation between the random intercept and random slope parameters explicitly, but the implied 
correlation will suffice today. 

1.1) What does modelling the data on the log scale as in Model 1 imply with regard to the variation 
(in terms of standard deviation) around the curve on the two scales? [3] 

Discussion saying something about assuming a constant scale parameter around the line on the log scale 
[1], and that this implies a changing standard deviation on the original scale [2]. In this experiment the 
assumption seems valid. 

1.2) Import the data set into R and explore it visually. You could draw line plots with a line for each 
subject, perhaps coloured by an explanatory variable; or a table of averages per subject next to their 
dose and weight. Discuss what you see. [5] 

library(tidyverse) 

"STSB6816Test3Data2023.xlsx" |> openxlsx::read.xlsx("TestData") -> d 

d |> ggplot(aes(x = Time, y = LogConc, colour = Subject, group = Subject)) + 
geom_line() 

 

d |> ggplot(aes(x = Time, y = LogConc, colour = Wt, group = Subject)) + geom_line() 
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d |> ggplot(aes(x = Time, y = LogConc, colour = Dose, group = Subject)) + 
geom_line() 
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Loading data [1], line plot(s) or table(s) [2], and discussion saying something about higher doses having 
higher curves - significance cannot be determined yet [2]. 

1.3) Fit Model 1 on this data and discuss your estimates of 𝜂0 and 𝜆0, along with their 95% 
intervals, in both statistical terms and practical terms. [14] 

# First we load Stan: 
library(rstan) 
mycores <- max(1,floor(parallel::detectCores(logical = FALSE)*0.8)) 
options(mc.cores = mycores) 
rstan_options(auto_write = TRUE) 

// This Stan block defines a t regression model with random effects, by Sean van der 
Merwe, UFS 
data { 
  int<lower=1> n;               // number of observations in total 
  vector[n] y;                // observations 
  vector[n] time; 
  int n_s; 
  int subj_ind[n]; 
} 
// The parameters of the model 
parameters { 
  real<lower = 0> sigma;          // error scale 
  real<lower = 0.5> nu;           // error freedom 
  real eta0;                        // intercept 
  real lambda0; 
  vector[n_s] lambda; 
  vector[n_s] eta; 
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  real<lower=0> tau1; 
  real<lower=0> tau2; 
} 
transformed parameters { 
  vector[n] mu; 
  for (i in 1:n) { 
    mu[i] = eta[subj_ind[i]] + lambda[subj_ind[i]]*time[i]; 
  } 
} 
model { 
  y ~ student_t(nu, mu, sigma); 
  lambda ~ normal(lambda0, tau1); 
  eta ~ normal(eta0, tau2); 
  target += log(nu) - 3*log(nu + 0.75) - 2*log(sigma) - 2*log(tau1) - 2*log(tau2); 
} 
generated quantities { 
  vector[n] log_lik; 
  for (i in 1:n) { 
    log_lik[i] = student_t_lpdf(y[i] | nu, mu[i], sigma); 
  } 
} 

saveRDS(t_curves, file = 't_curves.Rds') 

d$subjID <- d$Subject |> as.numeric() 
n_s <- max(d$subjID) 

t_curves |> sampling(data = list(n = nrow(d),  
                                 y = d$LogConc, 
                                 time = d$Time, 
                                 n_s = n_s,  
                                 subj_ind = d$subjID 
                                ), 
                     chains = mycores,  
                     iter = 4000 
                    ) -> Model1Fit 

pars_of_interest <- c('lambda0', 'eta0') 
Model1Fit |> traceplot(pars = pars_of_interest)  
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summary(Model1Fit, pars = pars_of_interest)$summary |> kable(digits = 3) 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

lambda0 -0.081 0.000 0.005 -0.090 -0.084 -0.081 -0.079 -0.073 5998.293 1 

eta0 2.295 0.001 0.060 2.175 2.257 2.294 2.332 2.418 8322.022 1 

Specifying the fixed effect model components correctly, including the data, parameters, and model 
components relating to t regression [4]. Specifying the random effects model components correctly, 
including the data, parameters, and model components relating to random intercepts [2] and random 
slopes [2]. Implementing the model correctly using the provided data and giving a sensible summary of 
the key parameters [7]. Note that the generated log_lik is not required here and the associated marks 
fall under a later question. 

The bio-availability of the substance is related to the Area Under the Curve (AUC). We are most 
interested in the area under the blood concentration curve (not log) between hours 2 and 14 
specifically. Assuming the model fits, the 

𝐴𝑈𝐶 ≈ 0.1∑𝑒

121

𝑖=1

𝑥𝑝(𝑦𝑡𝑖
𝑛𝑒𝑤|𝐲),  𝑡𝑖 = 2,2.1,2.2,… ,13.9,14 

1.4) Illustrate the posterior density of AUC for a random future subject. Please include only the 
lower 98% of predictions in any graphical illustration. [Partial credit will be given for a rough 
estimate of AUC.] [8] 

sims <- rstan::extract(Model1Fit) 
nsims <- length(sims$sigma) 

lambda0 eta0

2000 2500 3000 3500 4000 2000 2500 3000 3500 4000

2.2

2.4

2.6

-0.10

-0.09

-0.08

-0.07

-0.06

chain

1

2

3

4



Page 7 of 12 
 

t_vec <- seq(2, 14, 0.1) 
n_times <- length(t_vec) 
new_lambda <- rnorm(nsims, sims$lambda0, sims$tau1) 
new_eta <- rnorm(nsims, sims$eta0, sims$tau2) 
new_mu <- new_lambda %*% t(t_vec) + new_eta 
new_logy <- (rt(nsims*n_times, sims$nu)*rep(sims$sigma, n_times)) |> matrix(nsims) + 
new_mu 
AUC <- (new_logy |> exp() |> rowSums())*0.1 
rm(new_lambda, new_eta, new_mu, new_logy) 

AUC[AUC<quantile(AUC, 0.98)] |> density() |> plot(lwd = 3, main = '', col = 
'purple', xlab = 'AUC') 
grid() 

 

cat('A rough estimate of AUC is', 0.1*sum(exp(mean(sims$lambda0)*t_vec + 
mean(sims$eta0))), 'while a more accurate estimate might be', median(AUC)) 

|  A rough estimate of AUC is 65.13173 while a more accurate estimate might be 65.87401 

Generating new random effects [2]. Implementing the linear expression at given times values [2]. 
Generating new random variation [2]. Implementing the AUC expression [2]. [Thus, a valid rough 
estimate can get up to 4 marks.] 

Now consider the explanatory variables weight and dose. Including them as part of the intercept 
produces Model 2, which has the following changes: 

𝜇𝑖 = 𝜂𝑠𝑖 + 𝜆𝑠𝑖𝑡𝑖 + 𝛽1 ∗ 𝑤𝑗 + 𝛽2 ∗ 𝑑𝑗 ,  𝑗 = 1…𝑛𝑠
𝑤𝑗  denotes the standardised weight of subject 𝑗

𝑑𝑗  denotes the standardised dose of subject 𝑗
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1.5) Standardise the explanatory variables using the mean-standard deviation approach, then fit 
the model with standardised explanatory variables and give estimates of those coefficients (betas). 
[7] 

d$Wt_std <- d$Wt |> scale() 
d$Dose_std <- d$Dose |> scale() 

// This Stan block defines a t regression model with random effects and covariates, 
by Sean van der Merwe, UFS 
data { 
  int<lower=1> n;               // number of observations in total 
  vector[n] y;                // observations 
  vector[n] time; 
  vector[n] w; 
  vector[n] d; 
  int n_s; 
  int subj_ind[n]; 
} 
// The parameters of the model 
parameters { 
  real<lower = 0> sigma;          // error scale 
  real<lower = 0.5> nu;           // error freedom 
  real eta0;                        // intercept 
  real lambda0; 
  vector[n_s] lambda; 
  vector[n_s] eta; 
  real<lower=0> tau1; 
  real<lower=0> tau2; 
  real beta1; 
  real beta2; 
} 
transformed parameters { 
  vector[n] mu; 
  for (i in 1:n) { 
    mu[i] = eta[subj_ind[i]] + lambda[subj_ind[i]]*time[i] + beta1*w[i] + 
beta2*d[i]; 
  } 
} 
model { 
  y ~ student_t(nu, mu, sigma); 
  lambda ~ normal(lambda0, tau1); 
  eta ~ normal(eta0, tau2); 
  target += log(nu) - 3*log(nu + 0.75) - 2*log(sigma) - 2*log(tau1) - 2*log(tau2); 
} 
generated quantities { 
  vector[n] log_lik; 
  for (i in 1:n) { 
    log_lik[i] = student_t_lpdf(y[i] | nu, mu[i], sigma); 
  } 
} 

saveRDS(t_expanded, file = 't_expanded.Rds') 

t_expanded |> sampling(data = list(n = nrow(d),  
                                 y = d$LogConc, 
                                 time = d$Time, 
                                 w = as.numeric(d$Wt_std), 
                                 d = as.numeric(d$Dose_std), 
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                                 n_s = n_s,  
                                 subj_ind = d$subjID 
                                ), 
                     chains = mycores,  
                     iter = 4000 
                    ) -> Model2Fit 

|  Warning: There were 96 transitions after warmup that exceeded the maximum treedepth. Increase 
max_treedepth above 10. See 
|  https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded 

|  Warning: Examine the pairs() plot to diagnose sampling problems 

pars_of_interest <- c('beta1', 'beta2') 
Model2Fit |> traceplot(pars = pars_of_interest)  

 

summary(Model2Fit, pars = pars_of_interest)$summary |> kable(digits = 3) 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

beta1 0.017 0.007 0.330 -0.656 -0.183 0.018 0.223 0.665 2016.527 1.001 

beta2 0.160 0.007 0.333 -0.516 -0.039 0.161 0.367 0.807 2094.224 1.001 
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Adapting the model to use the variables correctly [2]. Standardising the two variables and sending them 
correctly to the model [2]. Implementing the model correctly using the provided data and giving a 
sensible summary of the beta parameters [3]. Note that the generated log_lik is not required here and 
the associated marks fall under a later question. 

1.6) Compare the fit of the two models, and then explain what your model comparison implies 
regarding the significance of the explanatory variables as a set. [6] 

fits <- list(NoXs = Model1Fit, WithXs = Model2Fit) 

library(loo) 
fits |> lapply(\(fit) {extract_log_lik(fit, merge_chains = FALSE)}) -> log_lik 
log_lik |> lapply(\(ll) {relative_eff(exp(ll), cores = 1)}) -> r_eff 
fits |> length() |> seq_len() |>  
  lapply(\(i) {loo(log_lik[[i]], r_eff = r_eff[[i]], cores = 1)}) |>  
  loo_compare() -> comparison 
rownames(comparison) <- names(fits)[order(rownames(comparison))] 
comparison |> knitr::kable(digits = 1) 

 elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic 

WithXs 0 0.0 104.9 11.6 46.3 6.6 -209.7 23.1 

NoXs -1 0.8 103.9 11.4 46.6 6.7 -207.8 22.8 

Calculating a suitable statistic for all models [3]. Note that most of these marks are for the code that 
calculates the log likelihoods, either in Stan or in R, not for the last bit of code above to get the statistics. 
Statement saying that the (correctly identified) model with the lowest criterion value is preferred [1]. 
Statement saying that the difference in criterion values is well within their standard errors, thus 
providing no evidence that the explanatory variables added value to the regression model [2]. 

1.7) Plot the data of any one observed subject from the experiment. On the same plot show the 
fitted curve of that subject and 95% prediction intervals around the curve. You may use either the 
log or original scale. [7] 

sbj <- 1 
plot_data_sbj <- d |> filter(subjID == sbj) 
t_vec_long <- seq(0,25,0.1) 
n_times_long <- length(t_vec_long) 
sbj_mu <- sims$lambda[,sbj] %*% t(t_vec_long) + sims$eta[,sbj] 
sbj_logy <- (rt(nsims*n_times_long, sims$nu)*rep(sims$sigma, n_times_long)) |> 
matrix(nsims) + sbj_mu 
middle <- colMeans(sbj_mu) 
intervals <- sbj_logy |> apply(2, \(sims_at_t) { 
  quantile(sims_at_t, c(0.025, 0.975)) 
}) |> t() |> c() 
plot_data_curves <- data.frame(LogValue = c(middle, intervals),  
                               Value = exp(c(middle, intervals)),  
                               Time = rep(t_vec_long, times = 3), 
                               Line = rep(c('Prediction','Lower Limit','Upper 
Limit'),  
                                          each = n_times_long)) 

plot_data_curves |> ggplot() +  
  geom_line(aes(x = Time, y = LogValue, group = Line, colour = Line)) +  
  geom_point(aes(x = Time, y = LogConc), data = plot_data_sbj) 
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plot_data_curves |> ggplot() +  
  geom_line(aes(x = Time, y = Value, group = Line, colour = Line)) +  
  geom_point(aes(x = Time, y = conc), data = plot_data_sbj) 
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Data of one subject plotted [2]. Estimate curve of that same subject plotted (not overall curve) [2]. 
Intervals generated and plotted for that subject, including available uncertainty [3]. 

 

Points total 

The points on the test add up to 50 
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